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SUMMARY

The electromagnetic modeling of packages and interconnects plays a very important

role in the design of high-speed digital circuits, and is most efficiently performed by

using computer-aided design algorithms. In recent years, packaging has become a

critical area in the design of high-speed communication systems and fast computers, and

the importance of the software support for their development has increased accordingly.

Throughout this project, our efforts have focused on the development of modeling and

simulation techniques and algorithms that permit the fast computation of the electrical

parameters of interconnects and the efficient simulation of their electrical performance.



PROJECT DESCRIPTION

The development of efficient and accurate computer-aided design tools is essential

for the implementation of high-speed digital circuits used in computer systems and

communication networks. With current trends in which network complexity and signal

speed keep increasing, problems associated with signal integrity such as crosstalk,

distortion, losses can compromise the overall electrical performance of computers and

communication systems.

Presently, industrial needs for computer support in network design is increasing

rapidly; however the availability of design and analysis tools capable of handling the

complexity and volume of manufactured systems lags seriously. Future winners in the

competitive world of high-speed communications will have to possess sophisticated

packaging analysis and design tools and system performance will be more and more

determined by the adequacy of these tools.

Because of their important role in the design process, CAD tools must offer certain

essential features such as speed, accuracy, availability of extensive library and good user

interface. CAD tools will insure minimum manufacturing cost, faster turnaround time

and more reliable hardware for production. To achieve the required performance,

optimization routines must be made available and efficient algorithms must be

implemented to guarantee speed and good user interface, friendliness and portability of

the software.

Our group at the University of Illinois has been involved during the past three years

in the development of modeling and simulation techniques for interconnects and

packages. In the parent project, the main emphasis of our work is directed toward the

modeling of complex interconnect structures as well as the simulation of interconnects.

The development of efficient and accurate computer-aided design tools is essential

for the implementation of high-speed digital circuits used in computer systems and

communication networks. With increasing clock rates and reduced circuit sizes,

electromagnetic phenomena such as crosstalk noise, distortion, ground bounce will

become more pronounced in both circuit boards and chip environment. These effects

seriously degrade the signal integrity of high-speed networks and compromise the

overall network performance.



Development of Interconnect Modeling Techniques

In many situations, one factor that contributes to the increased computation time in

the calculation of the electrical parameters of the Green's function in the spatial domain,

which represents the vector field produced by an infinitesimal dipole placed over the

dielectric substrate layer backed by a ground plane. An efficient method to compute the

2-D and 3-D capacitance matrix of multiconductor interconnects in a multilayered

dielectric medium was developed in our group. The method is applicable to conductors

of arbitrary polygon shape embedded in a multilayered dielectric medium with possible

ground planes on the top or bottom of the dielectric layers [2], [7]. The method has been

extended to the computation of equivalent capacitance of via structures in multilayer

environment [5].

In the time domain analysis, the ability to model fine features, e.g., wire bonds, is an

important requirement and is unavailable in the conventional finite-difference time-

domain (FDTD) approach unless a very high density of discretization is employed. The

FDTD method is one of the most widely used techniques. In the FDTD, the derivative

operators are replaced with the central difference operators, which preserves the second

order accuracy. Hence, its extension to the general nonuniform grids is not possible

without losing the second order accuracy or reformulating in terms of the curvilinear

coordinates. However, in solving any practical problems nonuniform grids are highly

desirable due to the limitation of computer resources.

An efficient way to implement the surface impedance boundary condition (SIBC) for

the finite-difference time-domain FDTD method was introduced [4]. Surface impedance

boundary conditions are first formulated for a lossy dielectric half-space in the frequency

domain. The impedance function of a lossy medium is approximated with a series of

first-order rational functions. Then the resulting time-domain convolution integrals are

computed using recursive formulas which are obtained by assuming that the fields are

piecewise linear in time. Thus the recursive formulas derived are second-order accurate.

The preprocessing time is eliminated by performing a rational approximation on the

normalized frequency-domain impedance. This approximation is independent of material

properties.



Simulation of Interconnects

In the real world of electronic packaging, transmission lines are more likely to be

nonuniform and may include discontinuities such as bends, tapers and transitions; hence,

the standard simulation tools for uniform lines can no longer be used to analyze them.

Presently, a number of methods are available for the simulation of coupled transmission

lines that are used to model interconnects. In the past two years, we have carried out a

systematic comparison of these methods with a view to developing an approach that

would be optimal in terms of both accuracy and efficiency. This has led to the

development of a transient simulation method based on the difference approximation

which has the highly desirable feature that it can be conveniently incorporated in a

circuit simulator [6]-[7], [10]-[13]. This approach not only outperforms the standard

scattering parameter method, but is very accurate and computationally efficient as well.

Software designers at Cadence Design Systems and Intel have recently implemented this

method in the latest circuit simulators.

The problem of distributed line simulation was analyzed, and the optimal method,

which results in the maximum efficiency, accuracy and practical applicability, was

developed. The method is applicable to transmission lines characterized by frequency or

time-domain data samples. The resulting line model can be directly used in a circuit

'simulator. The efficiency of the optimal method allows for the accurate transient

simulation of real circuits containing thousands of lossy coupled frequency-dependent

nonuniform lines surrounded by nonlinear active devices with virtually no increase in the

simulation time compared to that for the simple replacement of interconnects with

lumped resistors.

As components of the optimal method, the following novel techniques were

introduced:

- The system model for uniform and nonuniform lines which simplifies analysis of

distributed networks; the open-loop device model for uniform and nonuniform lines

which relates voltages and currents at the line terminals via the simplest possible transfer

functions and time-domain responses;

- The indirect numerical integration--a class of numerical integration methods, which has

ideal accuracy, convergence and stability properties;



- The differenceapproximation,a generalmethodfor applying numericalintegrationto
systemscharacterizedby discretedatasampleswasdevelopedandput in amatrix form.

- The matrix delay separation from the matrix propagation function, which avoids the use

of frequency-dependent modal transformation matrices;

- The relaxation interpolation method, which allows for an accurate and efficient

approximation of line responses in the time and frequency domains, automatically

reduces the approximation order depending on the original function and eliminates

spurious positive poles.

The complete set of frequency-domain relationships between the matrix Z, Y and S

parameters were derived and the direct interpolation-based complex rational

approximation method for transient simulation of macromodels for complicated multiport

interconnects (such as IC packages and connectors) was developed. The direct

interpolation-based method was applied to the automatic generation of lumped

equivalent-circuit models of multiport EM systems (with Dan).

Approximation Techniques for Circuit Analysis

Our research has also been focused in developing a unified methodology of model-

order reduction techniques for circuit and interconnects simulation. The following three

classes of model-order reduction methods: moment-matching technique, Krylov subspace

techniques, and reduced optimum approximation have been studied and their applications

for efficient circuit simulations have been identified.

The moment-matching technique has been shown to be very effective for generating

low order models for linear lumped and distributed systems. The method is useful for

systems whose main features can be retained by the first few orders of reduced system

models. These include the response estimations of linear lumped networks of medium

complexity, wave propagation in transmission lines with short delays and diffusion

process in p-n junctions [20].

Krylov subspace based methods such as Arnoldi algorithm and Lanczos algorithm are

effective and robust in generating reduced-order model of large complex systems

described by ordinary differential or difference equations. The methods are important in

obtaining reduced-order models to systems that can be characterized by relatively higher



order models.The methodsavoid theconstructionof ill-conditioned moment matrices

and the loss of information contained by the eigenvalues of the systems with smaller

magnitudes when higher models are sought. The methods are suitable for analyzing large,

complex lumped networks.

An optimum approximation in conjuction with model order reduction techniques such

as balanced representation and aggregation methods represents a very effective

methodology for generating reduced-order models of complex interconnects (infinite

dimension systems). The approximation method is applied to the distributed systems to

drive high-order finite models as an intermediate stage and then using balanced

transformation and aggregation method lower-order models are generated.
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Optimal Transient Simulation of Transmission Lines
Dmitri Borisovich Kuznetsov, Student Member. IEEE, and Jos6 E. Schutt-Ain& Member, IEEE

Abstract--This paper presents an attempt to formulate a
high-level description of the optimal transmission line simulation
method. To formulate the optimal approach, most significant
aspects of the problem are identified, and alternative approaches
in each of the aspects are analyzed and compared to find the
combination that results in the maximum efficiency, accuracy
and applicability for the transient analysis of digital circuits.
The practical implementation of the optimal method for uniform
multiconductor Iossy frequency-dependent lines characterized by
samples of their responses is outlined. It is shown on an extensive
set of runtime data that, based on the optimal approach, the
accurate line modeling in a circuit simulator is as efficient as the
simple replacement of interconnects with lumped resistors.

I. INTRODUCTION

HE PROBLEM of transmission line simulation gained
special importance with the development of high-speed

digital electronics. As transient times become faster, the trans-
mission line behavior of electronic interconnects starts to

significantly affect transient waveforms, and accurate mod-

eling of on-board and even on-chip interconnects becomes

an essential part of the design process. The complexity of

contemporary digital circuits necessitates the simultaneous

simulation of thousands of lossy coupled frequency-dependent

lines surrounded by thousands of nonlinear active devices.

Lines to be simulated may be characterized by measured or

electromagnetically simulated samples of their responses.
There are two approaches to the interconnect simulation.

The first approach creates macromodels for linear subcircuits

that may contain many transmission lines and other linear

elements [1], [2]. This paper discusses the second approach,
in which each multiconductor line is treated as an individual

circuit element.

The problem of the line simulation involves several areas of
science, such as ¢iectromagnetics, computational mathematics,

and circuit and system theories. The solution of the problem

is straightforward in the sense that all of the components

involved are well known and only have to be combined

together. The integration of areas, however, is a difficulty

that keeps the problem open and accounts for the diversity

of developed methods.

This paper presents an original attempt to identify the

components of the problem and to formulate a high-level de-

scription of the method that provides the maximum efficiency,

accuracy and applicability for the transient analysis of digital
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circuits. Such an approach allows one to more accurately
assess and compare the performance of numerous and diverse
line simulation methods.

The next section presents the formulation of the optimal
approach and discusses many of the existing line simulation

methods. Section III outlines the authors implementation of
the optimal method and presents numerical verification of the

method's accuracy and efficiency.

lI. FORMULATION OF OPTIMAL APPROACH

To formulate the optimal approach, major aspects of the
line simulation will be analyzed, viz., the formulation, the line

characterization, the line model, and, the transient simulation

method (see Fig. 1). Alternative approaches in each of the

aspects will be compared to find the optimal combination

that results in the maximum efficiency., accuracy and practical
applicability.

A. Formulation

The formulation affects dimensions of the problem. One

can distinguish between time-and-space formulations and time-
only formulations.

Time-and-space formulations (such as segmentation models

[3], [4]) are based on the voltage and current distributions
inside the line. These formulations are multidimensional and

computationally extensive.

Time-only formulations deal exclusively with the voltages
and currents at the line terminals. These formulations are one-

dimensional and more efficient. Consequently, to achieve the
maximum efficiency, the line simulation should be based on

a time-only formulation.

B. Line Characterization

As can be observed from the system diagram [5] shown

in Fig. 2, a line with terminations forms a feedback system.

Therefore, one can distinguish between closed- and open-loop
characterizations.

Closed-loop characterizations (such as Z-, Y-, H- and S-

parameter characterizations [6], [7]) include reflections from

the terminations and lead to complicated oscillating transfer

functions and transient characteristics (unit-step responses).
The open-loop characterization (direct characterization in

terms of the propagation functions) separates forward and

backward waves and results in the simplest transfer functions

and transient characteristics (see Fig. 3). The complexity of the
transfer functions and transient characteristics is an important

factor affecting accuracy and efficiency of the transient sim-

ulation. Consequently, to attain the maximum efficiency and

1057-7122/96505.00 © 1996 IEEE
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Fig. 1. Aspects of the transmission line simulation.
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Fig. 2. System model for transmission lines. Wvf and Wvb represent

the forward and backward matrix propagation functions for voltage waves:

Tx,,x, Tva and Fv'1, Fva stand for the near- and far-end matrix transmis-

sion and reflection coefficients. 1'2

accuracy, the line simulation should be based on the open-

loop characterization. The complete set of expressions for the
open-loop functions for uniform lines is given in Appendix A.

C. Line Model

Line models can be divided into two large groups: circuit

and noncircuit.
Noncircuit models can not be directly integrated into a

circuit simulator. As a result, these models cannot be effi-

ciently applied the transient analysis of real circuits containing

1Throughout the paper, capital boldface, small boldface and normal italic

symbols denote mamces, veclors and scalars, respectively.

Since only multiconductor lines will be considered, the modifier "matrix"

will be ormued in the future for brevity.

thousands of nonlinear active devices. Examples of noncircuit

models are the scattering-parameter model [6] and system

model shown in Fig. 2.

Circuit models can be directly incorporated into a circuit
simulator and are of prime practical interest. They relate

voltages and currents at the line terminals and do not depend
on the terminations. Circuit models can, in turn, be subdivided

into equivalent-circuit and device models.

Equivalent-circuit models have a larger number of nodes

than the line they represent. Examples of equivalent-circuit

models are lumped and pseudo-lumped segmentation models
[3], modal decomposition models for muiticonductor lines [8],

[3], [9], and equivalent-circuit modeling of the propagation

function and characteristic impedance based on Pad6 synthesis

[lO].
Device models have the same number of nodes as the line

they represent. A well-known example of device models is
the method of characteristics [11]-[15]. The circuit simulation

time is cubically proportional to the number of nodes and to

the number of voltage and current variables. Consequently,

to achieve the maximum efficiency and practical applicability,
the line simulation should be based on a device model that

does not require the introduction of current variables.

D. Transient Simulation Method

The transient simulation method is the prime factor affecting
the efficiency of the line simulation. The selection of the
transient simulation methods is confined to the numerical

Fourier and Laplace transformations, numerical convolution
andnumerical integration.



112 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS--I FUNDAMENTAL THEORY AND APPLICATIONS. VOL 43, NO 2. FEBRUARY 1996

0.75

0.5

0.25

\ s _ime,-r ,_ : r'- '_ "

_, Prpplg_on tuncuon, , , , ; a

I 2 3 4 5

Frequency, _ (Gtzd/s)

(a)

° io.
\._ Pmpaga,Uon funcaon t

_ Y parzmem-

, , ]0.25 I

D
I , _ , , L , , , , I , , , , I f

0 I0 20 30 40 50

Time, t (ns)

(b)

Fig 3 Examples of (at open- and closed-loop transfer functlons and {b)

transient characteristics. The scatterun_ parameters correspond to the matched

Iossless relerence system.

For the transformation and convolution methods, the com-

putational complexity is higher than linear. These methods
cannot directly handle nonlinear and time-varying systems,

and, along with the discretization error, introduce time- and/or

frequency-response truncation errors. In addition, the trans-

formation methods cannot be directly used with recursive

time-domain solvers employed by circuit simulators, that leads

to relaxation techniques which additionally degrade the overall

efficiency and accuracy [12]. Examples of the convolution-

based technit_ues are the Spice model for iossy lines [9] and

the scattering-parameter approach [6].
Numerical integration has linear computational complexity;

it can directly handle nonlinear and time-varying systems,
does not introduce truncation error, supports variable time-

stepping and is compatible with recursive time-domain solvers.
Numerical integration methods can be subdivided into direct

and indirect.

Direct numerical integration is based on approximations

for integrals or derivatives and includes such conventional

methods as linear multistep formulas, Euler, Euler-Cauchy and

Runge-Kutta techniques.

Indirect numerical integration [16] is based on the time-

response invariant discrete synthesis, and has ideal accuracy,
convergence and stability properties. Consequently, to achieve

the maximum efficiency, accuracy and practical applicability,
the line simulation should be based on indirect numerical

integration, Indirect numerical integration covers as special

cases techniques such as recursive convolution [13], [17],

and approximation of the response of a linear network to an

arbitrary piecewise linear input waveform used by some of the

asymptotic waveform evaluation (AWE) methods [18].

To systems characterized with samples of their responses,
numerical integration is applied via the difference approxima-

tion method [19]. The method is based on the approximation

of the system response with the corresponding response of a

system for which numerical integration formulas are already

available. The complexity of the difference approximation

method is only that of the approximation itself. As soon

as a system response has been approximated, the numerical

integration formulas are readily available directly in terms of

the approximation parameters.
To attain the maximum efficiency and accuracy, the differ-

ence approximation should be applied in the domain of the

system characterization. For transmission lines it usually is
the frequency domain. The time-domain approximation should

be used only when time-domain responses are available. The

complete set of analytical expressions for the fundamental

time-domain open-loop responses of two-conductor uniform

constant-parameter lines is given in Appendix B. It also

includes a new simple and accurate asymptotic approximation

for the responses of propagation functions.
To improve accuracy, the delay should be separated from the

propagation functions before the difference approximation is

applied. The conventional frequency-domain method of delay

separation for multiconductor lines is based on diagonalization

with the frequency-dependent modal transformation matrices

[14], [15], [17]. These matrices are nonminimum-phase func-
tions of frequency with unstable time-domain responses, that

limits the applicability of the modal transformation to special

cases in which the matrices are constant [9], [20].

A novel matrix delay separation method [19] avoids the

use of the frequency-dependent modal transformation matrices

and is applicable to a general case of matrix transfer functions

containing delay. For uniform lines, the formulas for the matrix

delay separation from the propagation functions are included

in Appendix A.

E. Approximation Methods

The choice of the approximation method for the difference
approximation affects the overall efficiency, accuracy and reli-

ability of the line simulation. Based on approximation criteria,

approximation methods can be categorized into four major

groups: minimum maximum error based methods, least square
based methods, interpolation methods, and series expansion

based methods (see Fig. 4).

Mini-max methods provide the highest accuracy, but result

in the most inefficient and unreliable algorithms (nonlinear

optimization).
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TABLE I

COMPARISON OF APPROXIMATION METHODS

ApproxtrnaUo_ Method

Mini-max approxm,.auoo

Least squares approxamauon

Interpolation

Economized rauonal approximation

Pad_ syud_r_is at zero

Pad_ SynOd.SiS at infinity

Maxunum _ Relaave

Relative Error ! runtane
i

0.0004% 200

0.002% 50

0.003% 1.0

0.004% 2,0

0.06% 1,3

0.3% 1,5

Least square methods provide high accuracy, but are still

computationaily extensive. The examples of least squares
based methods for the time-domain difference approximation

are Prony's method [21] and pencil-of-function method [22].

Series expansion based methods (such as PadE synthesis

used for the AWE [23]-[25]) are computationaily efficient,

but provide the poorest accuracy.
Interpolation (point-fitting) [19] agrees exactly with the

original function on a given set of samples. It provides high
accuracy for simple functions, such as open-loop transmission-

line responses, and is the most efficient among the approxima-

tion methods. It also requires the minimal number of the orig-

inal function samples, which is important when the samples

are obtained from electromagnetic simulations. Consequently,

to achieve the maximum efficiency, the line simulation should

be based on interpolation.

Table I presents the typical values of the maximum relative

error in the full frequency range from zero to infinity and
relative runtime for various approximation methods as applied

to the third-order frequency-domain difference approximation

of open-loop transmission-line functions. Economized rational

approximation starts with the PadE synthesis, which is not

accurate away from the expansion point, and then pem,u'bs it to

reduce the leading coefficient of error in a given approximation

interval [23], [24].
As one can observe, interpolation provides accuracy com-

parable with that of the least square approximation, and

is 200 times more efficient than mini-max approximation.

Interpolation is also up to two orders of magnitude more

accurate and 30-50% more efficient than Pad6 synthesis.

Note also that, because of the simplicity of the open-loop

characterization, a very high accuracy is achieved with as low

as third-order approximation and as few as seven samples of
the original function used for the interpolation.

F. Summa_. of Optimal Approach

To summarize, the analysis of the problem showed that

to achieve the maximum efficiency, accuracy and practical

applicability, the line simulation should be based on

• time-only formulation;

• open-loop characterization:

• device model that does not require the introduction of
current variables;

• indirect numerical integration;

• frequency-domain difference approximation based on the

interpolation and matrix delay separation.

A method close to the optimal, but based on the time-

domain difference approximation, was first proposed by Sem-

lyen and Dabuleanu [17], and was further developed by
Gruodis and Chang [15] to accommodate the frequency-

domain approximation. The advantages of the approach were

recognized only in recent years, and an increasing number

of techniques close to optimal are published [13], [141, in-

cluding techniques based on the AWE, recursive convolution
and method of characteristics, and by researchers previously

advocating transformation and direct convolution techniques.

The applicability of the methods, however, had been limited

by the lack of accurate, reliable and efficient frequency-

domain approximation and delay separation techniques such as

interpolation-based approximation methods and matrix delay
separation [19], and by the lack of open-loop models for
nonuniform lines.

The authors' implementation of the optimal method for uni-

form lines is outlined in the next section. The implementation
of the method for nonuniform lines is described in [26].

III. IMPLEMENTATION OF OPTIMAL

METHOD FOR UNIFORM LINES

A. Frequency-Domain Line Model for Transient Analysis

The frequency-domain element characteristic (for the tran-

sient analysis) which does not require the introduction of
current variables and is suitable for the line modeling, is given

by

il(w) ----Yl(_)vl(ua) - Jl(_)i2(_,) Y2(_)v2(,,,) j2(_'). "'

The conventions for the terminal voltages and currents are

shown in Fig. 5. The expressions relating the matrix admit-

lances Y] and Y_ and vector current sources jz and j2 to the

transmission line characteristics are derived directly from the

continuity conditions for the voltages and currents at the line
terminals. To separate forward and backward waves and open

the feedback loop, the current source Jz must depend only on
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Fig. 5.
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÷
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_- 2JV

÷

- = 2'

Conventions for the voltages and currents at the line terminals.

the backward wave, and J2 only on the forward wave. This

condition uniquely defines Y1,Y2 and jr,j2 as follows:

and

Yx(_) = Y2(w) = Y:(w) (2)

j](w) = 2ibl(w)j2(w) 2in(w). (3)

where Yc stands for the characteristic admittance, and the

forward and backward current waves, in, in and ibX, ib2 are
related as follows:

ibl(w) = Wlb(Co)[ib2(W) = i2(w) --t- in(w)]in(w) = Wu(w)[ifl(w) = il(w) + ibl(w)]. (4)

For uniform lines, the propagation functions for the forward
and backward current waves are equal, W]r = WIb. The

propagation function and characteristic admittance can be
computed from the insertion loss data [15], scattering param-

eters [27], or distributed RLGC parameters (see Appendix
A).

As can be observed, for uniform lines, the open-loop device

model (1)--(4) is equivalent to the generalized method of
characteristics [12], [13], [15]. However, for nonuniform lines,

the generalized method of characteristics no longer separates
forward and backward waves and loses physical meaning [26].

B. Difference Approximation

To perform the transient analysis, indirect numerical in-

tegration [16J is applied to the propagation functions and
characteristic admittances in the frequency-domain line model

(1)--(4) by using the difference approximation method [19].

For the difference approximation in the parallel canonic

form, samples of the frequency-domain transfer function are

approximated with the rational polynomial function

M

am

H(jw) = B_ + Z 1 + jw/w..," (5)
m=O

or samples of the time-domain unit-step response are approx-

imated with the exponential series

M

h(t) = [-Io - _ a,,,e -_''t,
m=l

where /2/0 and /i/z, denote the initial and final values of the

approximating transfer function [l(jw).

Once the approximation has been performed, indirect nu-
merical integration formulas (discrete-time difference equa-

tions) are readily given in terms of the approximation param-

eters. For the step invariance the formulas are

y(t.) = 9_z(t°) + Z z,.(t.)
rn=]

z,,_(tn) = a,,_(1 - e .... r. )z(t,__x) + e .... r. z,.(t,__l ).

(6)

where z, y and zm stand for the excitation, response and state

variables, respectively, and 7". = t,_ - t,__ x is the time step
at the nth transient iteration.

For the ramp invariance

( My(t.) = Ho*(t.) - _--_:_(t,,)
rrt=|

zm(t.) = d,_(T.)(z(t.) - x(t.-l)) + e .... r"zm(t._l).

(7)

where

i - t_-''_T"
d_(T.) =_

Wcra Tn

An alternative form of the ramp-invariant indirect numerical

integration formula has the coefficients of the present-time

sample of the excitation lumped together

{ ( " )y(t.) = [to- Z d,,_(T.) z(tn)- Z zm(t,_)
,,_=x ,,=1 (8)

zm(t,_) = (dm(T,__l)e -_`_T_' - dm(T.))z(t,_-l)

+ e .... r"zm(t,_l).

This form is especially suitable for discretization of charac-
teristic admittance, because, for admittances, the present- and

past-time terms of the numerical integration formulas have

different physical meanings.

Before the approximation, the delay is separated from the

matrix propagation function using the matrix delay separation

formulas from Appendix A. and is modeled separately using a

low-order spline of the simulated time points. The difference
approximation is applied to each element of the delayless

propagation function and characteristic admittance matrices.
For the characteristic admittances in (1), the excitations are the

terminal voltages and the responses are the terminal currents.

For the propagation functions in (4), the excitations and

responses are the current waves.

Since the open-loop functions are aperiodic, they have to

be approximated with only real poles, -we,,,. In addition, the
poles have to negative to be assure stability.

To represent the original functions accurately with the

minimum number of samples, the variation of the original

function from sample to sample should be about the same.

The following empirical formula for the sampling frequencies

was found to provide good results

w_=wh- 1-cos . k=0,1,..-.K.

The end of the approximation interval, wh. should be cho-

sen so that the original function would closely approach its
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final value. This assures that the resulting indirect numerical

integration Ibrrnuias will be accurate in the full frequency and
time ranges from zero to infinity•

C• Interpolation-Based Complex Rational Approximation

Method for Frequency-Domain Difference Approxzmation

The method fits samples of a complex transfer function
H(tu I with the rational polynomial function (5) at the set of

arbitrary spaced frequencies {0. wl. _2,' ". tub-}. The method

proceeds in three steps•

First, the real part of the original function is fit with the real

part of the complex rational polynomial function, which is a

real rational polynomial function of squared frequency [19]

Re([-l(jw)) = co + et_u 2 + c_(_2) 2 + ... + cAt(cu") At ¢9)
1 + /_1 we + /32(W2) 2 + ''" + /3M(w2) M "

The following linear system of equations (10) (see bottom of

the page) results from matching the real part of the original
function with (9) at the set of frequencies and premultiply-

ing both sides of each equation with the denominator For

interpolation, K = 2M and solving (10) produces a rational

polynomial function which coincides with the real part of the
original function at all of the sampling points. For a set of

samples larger than 2M + 1, the least square solution of (10)

can be obtained. However, it minimizes the approximation

error premultiplied by the denominator, which can lead to

inaccurate approximation. Better results are achieved with the

method of averages [28], which partitions the larger number

of equations into 2M + 1 subsets in the order of the increasing
of _. The equations within each subset are added up, which

makes the system consistent. The method is effective in

averaging out the noise in measured data.

After the real part has been approximated, the denominator
of (9) is factored yielding the squared poles, 2 Conse--- _Jcrrt •

quently, no unstable fight-half-plane poles can be produced.
However, there still can be spurious complex conjugate and

purely imaginary poles, which are removed. The remaining

real negative poles are used to formulate the equations for the

partial expansion coefficients, am, of (5). As a result, the order

M of (5) is less or equal to that of (9).

Matching the real and imaginary parts of the original
transfer function H(w) with the corresponding parts of (5)

at the set of frequencies {0, wl,,;2,'",,;h'} leads to the

following linear system of equations

A

0

0

1 ' ' " 1

! 1

I+ _(/_',--'i l " '+ ""i"t _'," _t

l 1

--_I/U.}r I

l + _/_,

--t,d h"/cd: I

)i + _vh• ,vF.1

I

• cz

Ho

Re(H(_I))

Re(H(_h. ))

Ira(H(_t))

.ImtH(_K)).

_11)

For interpolation, M = 2K. and both real and imaginary parts
of the original transfer function are matched exactly at all of

the K frequency points and dc. For an arbitrary larger number
of points, the least square solution of (I 1) is obtained from

ATAx = AYb.

The total computational complexity of the approximation

method is that of two real linear solutions and one polynomial

factoring. The orders of the polynomial and linear systems

depend only on the order of the approximation and not on the
number of the original function samples. Since no iterative or
relaxation techniques are involved, the method is free from

convergence problems. The method can be extended to match

exactly the initial and final values of the original function and
to perform a complex-pole approximation [19].

Fig. 6 shows an example of the fourth-order approximation

of an open-loop transmission-line transfer function. As can be

observed, although only nine samples of the original function

were used, the approximation exhibits an excellent match in

the full frequency range. In general, due to their simplicity, the
open-loop functions can be accurately fit with the 3rd-9th-
order approximation•

Ii 0 --. 0

w_ ... w_ M

•.°

-w_Re(H(w,)) ...

-w_Re(H(wK))

co

0

--W21M Re(H(wl )) c_...._I

• . -w_MRe(H(wK)) :

tiM.

= Re(H(w'))

.Re( H'(wK ) ) J

(I0)
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Fig, 6. An example of the 4|h-order complex rational approximation. The

original function is shown by the thin continuous curves and the approximating

function by the thick dashed curves.

D. Companion Model

By applying the difference approximation to the propagation

function and characteristic admittance, the frequency-domain

1.1 '[il}l Ivlll

1.2 --[il 1_ [v112

J_ {,,].
t.N ,

1':

Fig 7.

Li_l,ll I I

[vz)I [i_ll 2 Ii{ill| Ivz}: Ilzl z
,, _. 2.2

I " :
l %_" .

• I I tN., [.{_,lstt,l_
_, 2.N

Companion model for a transmission line,

element characteristic {1) is transformed into the following
discrete-time element characteristic, or companion model

{ il(t,,) = _'a(tn)V_(tn) --j_(t,) (12)iz(tn) "Yz(tn)Vz(tn) - j:(tn).

The circuit-diagram interpretation of the companion model is
shown in Fig. 7.

The admittances Y_ and Yz represent present-time co-

efficients in the indirect numerical integration formulas for
the admittances Yz and Y_. The current sources j] and j_

combine the currents jv, and jy_, which correspond to the

remaining parts of the numerical integration formulas for the

admittances, and J1 and Ja, which are given by the discretized
(3) and (4)

jl(t,) = -Jvl (tn) +j_(t,) (13)j2(t.) -jy,(tn) + j2(t,,).

Equations (3) and (4) do not contribute to the admittance part

of the companion model because the propagation functions

contain a delay•

The Modified Nodal Approach (MNA) stamp corresponding

to the companion model (12) is (see (14) at the top of the

page).

In the circuit simulator during the transient analysis, the

lines are represented by the tables of numbers (14), which
are recursively updated at each time iteration using numerical

integration. The left-hand side of the stamp (14) has to be

updated only when the value of the time step changes. If the

step-invariant indirect numerical integration formulas (6) are
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used. the LHS of the stamp becomes independent of the time

step, and only the right-hand side vector has to be updated.
Since the terminal currents are not introduced as variables,

the values of il and is in (4) are computed from (12).

E. Line Model for AC and DC Analyses

For ac and dc analyses, the complexity of the transfer

functions is not important, and the element characteristic that

does not require the introduction of current variables and is

suitable for the ac/dc modeling of transmission lines is the

Y-parameter characteristic

{ i1(_) = Yll(tv)vl(_) + Yt2(_)v2(_! (IS)i2(w) Y21(tv)vl(tv) + Y22(_)v2(_v).

The ],'-parameters are related to the open-loop functions as
follows:

Ylx(_) = Y2z(_)

= Y°(,,.,)+ 2[i - w_(_)l-'W_(,.,)vo(_).
Y1'_ (w) = Y2x (_) = -2[I - W_(_)]-ZWi(_)Yc(o.,),

where I is the identity matrix. The expressions were derived

by eliminating jl and j2 from (1)-(4), and transforming them

to the form of (15).

The dc model is merely the ac model at zero frequency. For

the limiting case of lines with zero distributed conductance,

G = O, the dc values of the Y-parameters are

Yla(0) = Y22(0) = -Ya_(0) = -Y_x(0) = _R -_.

The MNA stamp corresponding to (15) is (see (16) at the

top of the page).

F. Initial Conditions for Transient Analysis

The dc model is used to perform the operating-point (op)

analysis before the transient simulation. The op solution is
then used as the initial conditions for the transient analysis.

The initial conditions for the indirect numerical integration are
the dc values of the state variables, which are related to the dc

value of the excitation, .Co. as follows: zm(to) = a,_.r,_ for the

step-invariant case (6), =m (to) = 0 for the ramp-invanant case

{7), and z,,(to) = -dm(T_)xo for the ramp-invanant case

(8)• The dc values of in and ibU. which serve as excitations

for the propagation functions in (4), have to be expressed in

terms of the terminal voltages obtained from the op analysis•

Resolving (1)--(4) leads to

in(O) = [I -W_(O)]-I[Ye(O)v,(O)

-W_(O)Y_(O)va(O)]

ibm(O) = [I-W_(1)]-'[Y,(O)v_(O)

-wt(o)Y¢(o}v_(o/J.

For the limiting case of G = 0. the expressions become

1
in(O) = --ibm(O) = _R-a[v_(O) - v_(O)].

G. Optimal Line Simulation Algorithm

For an MNA-based simulator, the optimal line simulation

algorithm is as follows:

1) Before the transient analysis:

a) Perform op analysis of the circuit to find the initial

conditions for the transient analysis. Use the ac/dc
model (15)-(16).

b) For each line in the circuit, perform the difference

approximation of each element of the propagation
function and characteristic admittance matrices.

2) At each time iteration: Recursively update the line

stamps using the indirect numerical integration formulas

obtained at step l(b) and companion model (12)--(14).

Since the method introduces neither additional nodes nor

current variables, the optimal line modeling does not increase

at all the circuit solution time• The only additional time is

required to perform a low-order interpolation once in the
beginning of the simulation, and for a low-order numerical in-

tegration. As shown in the next section, this time is negligibly
small compared to the circuit solution time•
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TABLE II

RELATIVE RUNTIMES

Number
of

Nodes
C_cuit Descnp_on

10 I 2 two-conductor lines, 1 four-conductor line
(fines and excitation sources only)

10 2 two-conductor lines, 12 MOSFETs

100 20 two-conductor lines, 10 four-conductor
lines (lines and excitation sources only)

1000 200 two-conductor lines, 100 four-conductor
lines (lines and excitation sources only)

Lines
Modeled

with
Lumped

Resistors b

0.937

1.00

0.999

1.00

Relative Runtime a

Lines Modeled with the Optimal Method

Total
Circuit

StmulatJon c

1.00

1.00

1.00

1.00

_direct
Numencal

lnmgrauon d

0.0927

9.66.10 "3

2.06.10 "J

1.64.10 -s

Diffnen_ h4T_ximanond

Frequency Time
Domam Domain c

0.0793 0.0550

9.47.10 "_ 6.57.10 -3

1.75.10 -3 1.21-10 "_

1.39.10 "s 9.64.10 "_

• For 1000 ume points.

b One rcsistor per signal conductor.

c Does not include the difference approxamauon time.

d Seventh-order.

e Time-dommn difference approximation was performed by the relaxation interpolation method [ 19]. The runtime includes
automaUc determmaUon of the approxulnaUon interval and interpolauon pomp.

H. Numerical Results

The optimal method has been adopted in several industrial
and commercial circuit simulators, and, in numerous real-

life simulation exercises, proved to be reliable, accurate and

efficient. Table II presents relative runtime data for circuits of

various types and sizes. As can be observed, even for the worst
case of a small circuit consisting only of lines, the optimal

model is virtually as efficient as the simple replacement of

interconnects with lumped resistors. The resistive model was

chosen for the comparison because it represents the limiting

case in the simplicity and computational efficiency of the

interconnect modeling.

Fig. 8 shows verification of the optimal model accuracy with

the Spice3e2 iossy multiconductor line model [9]. A simple
network was chosen as an example to reduce the influence of

factors other than the line model on the simulation accuracy.

A variable, third-to-fifth-order frequency-domain difference

approximation was applied, As can be observed, the compared

waveforms are indistinguishable. In fact, the accuracy of

the optimal method depends exclusively on the accuracy of

the difference approximation which is very high (see Table
I). The runtime for the optimal model was three orders

of magnitude shorter than that for the Spice model, which
is, in turn, an order of magnitude faster than segmentation

models.

IV. CONCLUSION

From a novel analysis, based on identification of the most

significant aspects of the problem and comparison of alter-

native approaches in each of the aspects, it was shown that
to achieve the maximum efficiency, accuracy and practical

applicability, the line simulation should be based on: a time-

only formulation, open-loop characterization, device model

that does not require the introduction of current variables, in-

R1 V, , V, R.

Ca)

0 I0 20 30 40 50 60 70

Time (ns)

(b)

Fig. 8. Ca) The network configuration and (b) comparison of the trans,ent

waveforms generated using the optimal line model installed in an MNA-based

circmt simulator (thick broken curves) and Spice3e2 Cthtn continuous curves)

/?) = ./7-, = 50 _LBe = /7_, = I klL//:_ = 174 = If) M.Q:

self-inductance L, = 418 nH/m, self-capacitance C, = 94 pF/m. mu-

tual inductance L,,, = 125 nil/m, mutual capacitance C,,, = 22 pF/m.

17 = 13 _/m.G = (1.1 = (1.G77 m fall signal conductors are the same).

direct numerical integration, and frequency-domain difference

approximation based on the interpolation and matrix delay

separation.
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TABLE III

Name of Function

Adnuttance and

impedance per unit
length

;Modal
[ransfonnauon

rnamccs

Characteristic

adnmtance and

m_pedance

Propagauon
cons[a/it b

Propagauon delay b

Propagation
function b

Delayless
propagation
f_nction b

Transmission

coefficient c

Function forCurrent Waves a

In Standard Basis

Y(o)) = G(eo) + ;o)C(eo)

= Mdo)) Y=((o) Mv1(m)

MI(O))

= Eigenvectors(Y(a)) Z(o))),

_1, = M,(o-)

= Eigenvectors(C(,_) L(oo))

Y,(o_)= KI(co)Z-'(o))

= K_(o_) Y(u))= Z_1(m)

= Ms(o) ) Y.(o)) Mvl(O))

I

Ks(co) = (Y(m) 7_.(co))i

= y(o)) y_l(o))

= Ms(o)} Kt.,(o)) Mi't (o))

I

Tt = (C(-) L(o.))i l

= Kt(--)l= M I T,_ l_4_'

Wt(o) ) = e-'C,.._ J

= Mr(mS Wl=(o}) M_t(m)

= Y.((o) W,,(o)) Z.((o)

= _V,(_o)e"''t'

= w,(o)) N4,e-'" Nt,'

Wt(o)) = Ws(o)) e _'r,

Ts(m) = (I + YAm) Z.(o))-'

= Y,(co) Tv(CO) Z,(ea)

Reflect/on F, (co) = (1 + Yt(O)) Z, (e0))-'
coefficient c

.([ - YAm)z,(o_))

= Y,(o_)rv(m) Z,(m)

In Modal Basis

Y.(o))

= M['(_o) Y(¢_) My(m)

M_'(_) = Mtv (o)),

t

Y.(o)) = (Z2(o}) Y.(o_)) i

= K_=t(o})Y.(O))= Z-_ (to)

= Mi'(o) ) Y,(o)) Mv((O)

I

K,.(O)) = (Y.(O)) Z=(O)))_

= y.(o)) y-t (o))

= Eigenvalues(Kl(o)) )

= M_t(m) Ks(Co) M,((_)

= Kv=(o))

T,.. = Kt.(oo) 1

= FJgeanaum('r,)

= IVl[ I T, M, = Tv=

W,..((o) = e -'_'s'' t

= M_(O)) Wt(o)) Ms(mS

= Wv.(m)

Funcuon forVoltage Waves d

InStandardBas,s

Z(O)) ffi R(_0) +/tO L(OJ)

= Mv(_) Z.(o)) M_'(o))

My(aS)

= Eigenvecton(Z({o) Y(e0)),

I_ v = My(-)

= Eigenvectors(L(-) C.(-))

Z,(oo) = Kv((O) Y-'(m)

= Kv'(m) Z(m) = Y_'(o_)

= My(o)) Z.(o)) M_'(o))

I

K,(m) = (Z(m) Y(m)F

= Z(o)) Z;'(o))

= My(CO) K=(m) M_'(O))

I

Tv = (IX-) C(-))I L

= Kv(--) 1 = P_4v Tv= l_lv s

W v ((0) = e J" c'_

= Mv(_) Wv=(m) M_'(m)

= Z,(_) W_(o_) Y,(to)

= _', (mSe"_r"

= ',Vv(m)M_ e"'_" r_'

VVv (o)) = Wv(0} ) e'_T"

Tv(O)) = (1 + Z,((o) Y.(m))-'

= Z,(o)) T,(m) Y,(m)

F v ((o) = (Z,(w) Y,(o)) + I)-'

.(Z,(w) Y.(o)) ' I)

= Z_(m) F,(m) Y_(m)

In Modal Basis

Z.(o))

= Mv'(m)Z(o)) M,(o))

I

Z.((o) = (Y_(o_)Z=(o)))_

= Kv__(o)) Z=(o)) = Y-_ (o))

= Mv'(tO) Z,((o) M,(_o)

K,.(oo) = (Z.(m) V.(o)))i

= Z=(o_)Z-' (o))

= _geuv_um(K, (o)))

= Mv'(O}) Kv(OO) Mv(O_) =

= K,.. (o)

Tv= = Kv=(") 1

= Etgenvalues(T_)

= IriS' Tv M, = T,...

Wv.,(o)) = e-K-._ o_'

= Mv'(O) ) Wv(O)) My(o))

= W,..(c0)

a Voltage and current functions are related via the following duality replacement rules: V *-_ I. Z ¢-_ Y, R _ G, L ¢-¢ C.
!

b Boldface (.)i and e_'_ denote matrix squre root and matrix exponential, respectively.

c For a Thevenin's [erminadon Zº(o_).

L ItS

The practical implementation of the optimal method for

multiconductor lossy frequency-dependent lines characterized

by discrete samples of their responses was outlined, including
extraction of initial conditions from op analysis and the line

model for ac/dc analysis. The complete set of expressions for

the open-loop transmission-line functions was given, including
new formulas for the matrix delay separation from the propa-

gation functions, which avoid the use of frequency-dependent

modal transformation matrices. The complete set of analyt-

ical expressions for the fundamental open-loop time-domain

responses of two-conductor lines was presented, including a

new simple and accurate asymptotic approximation for the

responses of propagation function. The novel interpolation-

based complex rational approximation method was introduced,

and ramp- and step-invariant indirect numerical formulas were

given in terms of the approximation parameters.
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TABLE IV

Name of
Function

Propagation
! funcuon,

W(_0) a

Chatac_nslJc
admittance,

L(o_)c

Transmzssion
coefficient for
voltage waves,

rv (t_)c, d

G

G=O

G=O

Arbitrary
G

G=O

Reflection coe-

fficient, F(c0) a

Transient Characteristic, h(t)

i

t

hw(t) = (I ,2n

ImpulseCharacteristic,g(t)

8w(t)- e--8(0 + a u(t- :)b
(2_b(t + d))"_

[(I }h,(,) = Yo (e-th 'o(B¢) + £ :e-lS, 'o(_)d_ ) ,r(t) = Yo {S(t) + e-is, -,)o(bt)+bl,(bO

h,(,)= ro _-_,_0(13,) =_t) = r, {_,) + I e-p'[t,(lo-t°(It)] }

+ R, _'lo(bt) + ('21-c)_'+of_'<"io<_)

+ _- e-_ _'_" t'0(_) a_ dr'

" r., i+ g e-_'lo(b0+ (213-c) •-_ ___"_/o(b¢)d_
o"

g_(t)= R, + Z_

=,>. {z°(._I)--
+ R,[_-,,[(p- c)1o(_,)+ bt,(_,)]

t

hr(t)= I - 2At(r) gr(t)= 8(0- 2gr(t)

'(1_.) INote: u(t) is the unit-step function, or= ,_ GZo+ 1, a= ½ GZo- l, [3= I(l.I).,-
c= - _ J_--_o ' d= 2nb(l -e',):' x= ,/-_-l, Y0 = and Z0= . For G=O: otto= _00 and _=b= _.

a In the caseof two-conductor lines, this functions are the same for both voltage and current waves.

b Approximation basedon the asymptouc expansion of the modified Besselfunction I_(x). It is widdn I% accurate in the full time
range.

c Expressions for the corresponding dual (voltage/current) functions can be obtained via the duality replacement rules (see
AppendixA).

dFor a Thevenin'sterminationR;.

The optimal method is compatible with recursive time-

domain solvers employed by circuit simulators and supports

variable time-stepping. The method has been adopted in sev-

eral industrial and commercial circuit simulators, and, in

numerous real-life simulation exercises, proved to be reliable

and accurate. It was shown on an extensive set of runtime data

that. based on the optimal approach, accurate line modeling in

a circuit simulator is as efficient as a simple replacement of

interconnects with lumped resistors.

APPENDIX A

OPEN-LOOP TRANSMISSION-LINE TRANSFER FUNCTIONS

See Table lit.

APPENDIX B

TIME-DOMAIN OPEN-LOOP RESPONSES OF

CONSTANT-PARAME'IER TWO-CONDUCTOR LINES

See Table IV.
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Capacitance Computations in a

Multilayered Dielectric Medium Using

Closed-Form Spatial Green's Functions
Kyung Suk Oh, Student Member, IEEE, Dmitri Kuznetsov, and Jose E. Schutt-Aine, Member. IEEE

Abstractm An efficient method to compute the 2-D and 3-
D capacitance matrices of multiconductor interconnects in a
multilayered dielectric medium is presented. The method is based
on an integral equation approach and assumes the quasi-static
condition. It is applicable to conductors of arbitrary polygonal
shape embedded in a multilayered dielectric medium with possi-
ble ground planes on the top or bottom of the dielectric layers.
The computation time required to evaluate the space-domain
Green's function for the multUayered medium, which involves
an infinite summation, has been greatly reduced by obtaining
a closed-form expression, which is derived by approximating
the Green's function using a finite number of images in the
spectral domain. Then the corresponding space-domain Green's
functions are obtained using the proper closed-form integrations.
In both 2-D and 3-D cases, the unknown surface charge density
is represented by pulse basis functions, and the delta testing
function (point matching) is used to solve the integral equation.
The elements of the resulting matrix arc computed using the
closed-form formulation, avoiding any numerical integration.
The presented method is compared with other published results
and showed good agreement. Finally, the equivalent microstrip
crossover capacitance is computed to illustrate the use of a
combination of 2-D and 3-D Green's functions.

I. INTRODUCTION

°N recent years, the characterization of microstrip disconti-nuities in a multilayered dielectric medium by equivalent

circuits has gained special interest due to the modem develop-

ment of VLSI technology. For an inhomogeneous structure

the modes are hybrid, and the full-wave analysis must be

considered. However, the quasi-static approximation is suffi-

ciently correct when the transverse components of the electric

and magnetic fields are predominant over the longitudinal

components; in other words, the transverse dimensions of

microstrip lines are much smaller than the wavelength. Based

on this quasi-static approximation, we present an efficient
method to compute the 2-D and 3-D capacitance matrices
of multiconductor interconnects in a multilayered dielectric

medium.

Under the quasi-TEM approximation, the capacitance cal-

culation follows from the solution of Laplace's equation

with appropriate boundary conditions. Various methods have

been employed to obtain the solution in two-dimensional

space [1]-[9]. Two commonly used techniques for both 2-D

Manuscript received April 5, 1993; revised October 11. 1993.
The authors are with the Electromagnetic Communication Laboratory,

Departmentof Electrical and Computer Engineering. University of Illinois
at Urbana-Champaign, Urban& IL 61801 USA

IEEE Log Number 9402933.

and 3-D capacitance calculations in multilayered structures

are the integral equation method [10], [11] and the domain
methods, such as the finite difference and finite element

methods [12], [13]. In the domain methods, the unknown

potential distribution is solved to compute the capacitance
over an entire domain by either directly approximating the

differential equation with the finite difference equation (FD) or

using the equivalent variational expression in conjunction with
the method of subareas (FEM). The major disadvantage of the

domain methods is that the unknown potential distribution to

be sought is over the entire geometry considered, including the

dielectric regions; hence, it may be computationally inefficient

for the open geometry case even with the use of absorbing
boundary conditions to truncate the open geometry. On the

other hand, the integral equation approach first obtains the
Green's function for a layered medium using image theory,

which consists of rather slowly converging infinite series, and

solves for the charge density on the conductor surfaces using

this Green's function as its kernel. As noted in [2] for N layers,

the expression for the Green's function would consist of N - 1

infinite series. Alternatively, the free-space Green's function is

used in [2], [3] to avoid infinite _eries, but additional unknown

charges on the dielectric interface and ground planes, on top

of the unknown charges on the conductor surface, must be
included. Hence, the dimension of the resulting moment matrix

is substantially increased.

Yet another approach to avoid an infinite summation is to

solve the integral equation in the spectral domain (SDA),
where the Green's function is in a closed-form expression;

however, this approach can not be applied to general problems,

e.g., conductor with a finite thickness. In this paper, the

Green's function for the layered medium is approximated

in the spectral domain using exponential functions, which

is equivalent to a finite number of weighted real images

in the space domain. Although complex-valued exponentials,

which are often used in a nonquasi-TEM analysis [14], can

also be employed to reduce the number of weighted images

[15], real-valued exponentials are sufficient to approximate

for quasi-TEM applications, and it further avoids the use

of expensive complex operations. Since the spectral-domain

representations of the Green's function for 2-D and 3-D cases

are identical, the approximation is only performed once for

both cases, and then the equivalent weighted images in the

spectral domain are directly used to evaluate the Green's

functions in the space domain.

001g--9480/94504.00 © 1994 IEEE
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in Layer I in Layer 2

Co)

Fig. 1. (a) Cross-sectional and (b) planar views of possible configurations of

multiconductors in a multilayered medium• The two figures are not related.

II. GENERAL STATEMENT OF THE PROBLEM

The general geometries of systems of multiconductors em-

bedded in a multilayered medium are illustrated in Fig. 1;

(a) shows a possible cross-sectional view while Co) shows a

possible planar view. An arbitrary number Na of nonmagnetic

dielectric layers are hacked by two optional ground planes

with possible top or bottom locations, and within these layers

an arbitrary number Nc of perfect conductors are placed

throughout the layers with arbitrary orientations and possible

discontinuities. The geometries of the dielectric layers are
assumed to be uniform in the x- and z-directions, and the

cross sections and planar geometries of the conductors can be

arbitrary as long as their boundaries can he described with a

piecewise linear function.

The integral equation relating the electrostatic potential

V(r) to the charge density p(r) is

V(r) = I G(r,r')p(r')dr' (1)
tf_

where G(r, r') is the Green's function for the multilayered
medium, and 1"2denotes the surfaces or cross-sectional bound-

aries of conductors for 2-D or 3-D problems, respectively. The

capacitance can be computed by solving this integral equation

for the charge density p(r') with various settings of voltages on
the conductors. We will first concentrate on the determination

of the Green's function G(r, r').

III. APPROXIMATION OF THE

SPECTRAL-DOMAIN GREEN'S FUNCTION

Consider a unit point charge located at the ruth layer at

(x0, Y0, z0) (Fig. 2). By definition, the 3-D Green's function

Fig. 2.

tion.

Cv : '

Y_.-!

• _' :":'_ ...... -'- .... /: _,Y_v?_ ..... y

//?iii_i? m ' i il/fiill/i?il;ii??iilSii?:iiiii_i/i?/iii?ii?I?Sfi -

the geometric configuration used for determining the Green's func-

satisfies Poisson's differential equation:

y, z Izo, yo, zo) = l _(z - xo)_(y - yo)_(z - zo)V2GSD(x,

(2)
with the appropriate boundary conditions at the possible

ground planes and dielectric interfaces. Noting that the
dielectric medium is uniform in two directions, we can

represent the Green's function and the point source in the
spectral domain in terms of its transforms in the x- and z-

directions. The space-domain and the spectral domain Green's
functions are then related by

GaD(x, y, z I z0, yo, z0)

i /+°°/+°°= (-'_).,__ ..-_ dadB e-_(_-::°)-_(_-_°)

× GSD(a,y,_lxo, Yo, zo )

(3a)

¢3o(_, _, _ I _o, _o,_o)

= dxdzeJa(::-_:o)+Js(z-zo)

X G 3D(x,y,z Ixo, Y0, Z0)

(3b)

where _so(a,y, fl I xo,yo,zo) is the 3-D spectral-domain
Green's function and a and _ are the transform constants

associated with the x and z directions, respectively. Then, (2)
can be written as

_ _ _ _ CSD(_, U,_ Ixo, uo, _o) = _(u - _o).
(4)

The general solution of the above equation is given by

GAD(7, y [ ro) = Am,.e-"' + B..,.e "_
2_,,,'r , "r= v_J + _2

(5)

where the first subscript ra denotes the layer where the

source is located (source point), while the second subscript

n denotes the layer where the Green's function is evaluated

(observation point). The same expression can be obtained by

Fourier transforming G_m(x,y I Xo, Yo) in the x-direction
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with the transform variable % Furthermore, since the unknown

coefficients A,..,,_ and B,._,. are to be determined using the

boundary, conditions in the _-direction only, it is easily seen

that the expressions for _2D and _3D must be identical
under our Fourier transformations. Thus, in what follows,

we will omit the superscripts for the spectral-domain Green's

functions. Applying the boundary conditions at the dielectric
interface and ground planes, (5) can be written as

A+."(e-'m_ +Fn,n+le-2"_d.+_Y)

AZ ,, " - _, .+2_d.--,_
d('1, y t r0) = .... + ]

Y>Yo

(6a)

Y_< yo

(6b)

where

n-1

+ +
AT... = A,,,,,,_ H S+j,j+l

3=m

A=,. fi sL_ 
3=n+1

S+ = _ Tjj÷I
jj+l

I -- Fj+l,j['j+l,j+2e 2"r(d:-d:+t)

Tj,j-1

SL 1=
' - 1 - Fj_l,jf'j_lj_2e 2"t(a,-'-d:)

(7)

(8)

Fj,j+I =

I'i,j- 1 -=

Fj,j+I + _.j+l.j+2e2-r(d:-dj+,)

1 + Fj,j+lf'j+l,j+2 e2"r(d: -d:+, )

Fj,j-1 + f'j-l,j-2e 2Md:-2-gJ-l)

1 + Fj,j-1Fj- 1,j-2e 2"r(d:- _-d: __)

Fij -- ei --e) Tij 2¢i

' ¢i + ej " ei + sj

(9a)

(9b)

Here, I'jj+_ is the generalized reflection coefficient, which
is the ratio of the amplitudes of voltages at y = dn due to the

image charges located above and below the jth layer, f'./j+l

takes the value of 0 or -1 if the 3th layer is a half space, or the

(j + 1)th layer is a ground plane, respectively. The unknowns

to be determined are A+,m and A_.,m. Using the facts that,

at y = Yo, (6a) and (6b) must be equal and that the normal

component of the displacement field must be discontinuous by

the charge density at y = Yo, we can obtain expressions for
4-

Am. m and Am. m as follows:

.4,._,., = M,. e +'r_'° + F,,_ m-xe "'%d_-'-'a,° (lOa)

A_, m = ,'lm[e -'_° + ['m.m+le -2-'d_''_°] (10b)

where

31,,_= [l-f" .... 1Fmm*le+2"_(d"-_-d_)] -1 (11)

Now to approximate the Green's function with respect to "7

but independently of y and Yo, we rearrange these expressions

by factoring out all y and Yo dependencies as follows in (12a)

and (12b), shown at the bottom of the page. where

rt--1

+ = Mr.t..+1 ]-I s+Kin,ha , j,2+ l
j=m

n--I

K+n,2 = M,._[',_,,_+lr'._,,,_-i II SJ,"J+I
j----m

n-1

-e
K .... a = Mr. 1-I S+j,j+l

j ._--rll

rt--I

+ = MmFm m-I I'I S+Kin,n,4 , j,j+l

j=rvl

K_,,. a = M,,_Fm,,_+I fi S_j_I

j=n+l

K$.,.,2=M,. fi S_j_ I

j=n+l

Km,.,s=a%l=['m.=+lFn,n-1 fi Sj,-'j-1

j=n+l

K_n.n.4 =M=F.,.-I fi S_j_I.

j=n+l

(13a)

(13b)

The determination of the closed-form space-domain Green's

function can now be preceded by the approximation of the
4-

coefficient functions Kin,n, i of the exponential terms.
A physically intuitive approach to approximate the potential

due to a charge in the layered medium is the use of a finite

number of the weighted image charges in the homogenous

medium, which is equivalent to approximating the coefficient
functions 4-g_,,,,_ with exponential functions. The equivalence

1 [K + e.r(it+Yo_2d.) TO'+ .,'r(+lt- Ito +2(d,,.- x d,, )) 1¢'+ ,,-r(-lt+Yo)

d'(% y lro) = _ k "'"" + "'_'"'_ + "''"s_

w+ o_(-y-yo+2d=-,)_
+ ..,_,.,4_ j y _>yo

G("r, y[ro) = 2e,,_--"-_l(K,_,.,I e'r(It+y°-2"t"O + K,_,.,2 e'r(+_-y°) + K+,.,.,se'_(-_+_°-_(a"-_-g_))

+ K_n,n,4 e'r(-y-y°+2d'-t)) Y <--YO

(12a)

(12b)
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¢3

Fig. 3. The geometry used to test the approximated

12 35 IO I_

31013

tl 2.5 I013

2 1013

el

1,5 IO z_
>

Green'stime,on, z io"

5 10 I_

0 lO °between the weighted image charges and exponential functions

will be shown below in (15) and 06). In EM analyses,

the complex-valued exponentials are often used for pole-

zero modeling of signals, such as an electromagnetic-scatterer

response. The least-square formulation of this exponential

approximation results in nonlinear equations and can only
be solved by iterative methods, such as gradient descent

procedures or the Newton method. Due to the computa-
tional inefficiency of these algorithms, some other suboptimal

noniterative techniques are also proposed: the least-squares

Prony method and the generalized pencil-of-function (GPOF)

method [16], [17]. Although these algorithms are noniterative,

their computation involves matrix inversions and a polyno-

mial factoring or a solution of the generalized eigenvalue

problem, which are still computationally inefficient compared

to the proposed method. By taking into account the specific

properties of the coefficient functions K_m,n,,, which are real-
valued and nonoscillatory, we can utilize more simple and

efficient methods than the universal approximation techniques
mentioned above; in particular, real exponentials are sufficient

to approximate the coefficient functions and avoid any com-

plex operations _. Thus, we have devised a simple relaxation

algorithm based on curve fitting. The details of the procedure

are given in Appendix A. Although this method is simple and

iterative in nature, it converges to reasonable accuracy in a few

iterations, and requires less computation time as compared to
those for the previously mentioned methods.

In general, the coefficient functions K_.,_,_ have asymptotic
values, and an analytical extraction of these values should

be performed to increase the accuracy of the approximated

functions or to reduce the computation time. The expressions

for these asymptotic values can be easily obtained numerically
or analytically. Furthermore, some of these coefficient func-

tions are often zero, one, or symmetry of the others and these

properties can also be explored to reduce the computation time.
It can be seen that there exists a pole at 7 = 0 for a case with

a presence of both top and bottom ground planes, and Kme,,,,
can no longer be approximated with exponential functions.

To remove the singularity for this case, one can subtract

the original Green's function by the Green's function for a

homogenous case. Then, the remain part can be approximated
as before, and for the homogeneous Green's function a closed-

form or a fast converging summation form can be used in the

space domain [18]. The detailed discussion of a stripline case
for the 2-D case is given in Appendix B.

IThe complex-valued exponentialscan be viewed as the complex images
in d_ space domain in this paper.

Fig. 4. Comparison
spectral domain.

Green's Function
In the Spectral Domain

k- ....................................................................................

- .............- ....... ........

O.J I 1,5 2 2._

7

ofapproximatedandexactGreen'sfunctionsinthe

The Green's function for the structure shown in Fig. 3 is
approximated and compared with the exact Green's function

in the spectral domain. The dielectric constants e:, e_, and e3
are taken to be 2e0, 5e0, and co, accordingly. The thicknesses

of the layers t_ and t2 are 0.6 mm and 1.0 mm, and the

observation and source points, y and Yo, are 0.6 mm and 1.6

mm, respectively. A maximum number of eleven exponentials
were used to approximate the Green's function. As shown in

Fig. 4, the approximated results agree with the original one,

and the maximum relative error was 0.0003. It is important to

observe that although the exponential approximation might fail

for the large argument case due to its fast decaying nature, by
extracting the asymptotic value and the exponential factor from

the coefficient function, the limiting behavior of the overall

approximated Green's function would still remain accurate.

After approximating the Green's function in the spectral

domain, one can obtain the expressions for 2-D and 3-D spatial
Green's functions using the following identities:

1 1

r V/x2 + y2 + z 2

1 jf_*_c j_ +_c e -'_1_1= _ dad_e -_('_+a_) (14a)
2_" _ _ "7

1 i +_ e- I"nfl= _ _ d'ye-J'r_ I'rl (14b)

The above identities can be easily derived by considering the

potential due to the unit point or line charges _. Thus, in the
space domain, the approximated Green's function for 2-D and

3-D cases, in general, can be written as

4

1 _/_D'±(r I r0) (15a)a3"( I o) = -=

4

Ipo)= .= I po). (l b)

Again, the superscripts + and - are used to denote the cases

for y _> Y0 and y < Y0, respectively. For j = 1 and y _> Y0,

:Equation (14a) can be viewed as the static version of Weyl's identity.
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Fig. 5.

domain.
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-3D,+/the expressions for ]j / r I to) and f_D'+(r I ro) are given

by (16a) and (16b), shown at the bottom of the page. Here,
+,_ +

K,,_,.,j denotes the asymptotic value of Kin,n, j and we have
+

assumed that K,,_,.,jis approximated by

= Z, , ,._,,_,,,j_. j = 1,2,3,4 (17)
/=1

where N+,,_,j is the number of exponential functions used

to approximate K_,,j. The approximated Green's function is
also compared in the space domain for the 2-D case. The same

structure is used as in the previous one with e2 = ez = 2e0,

and V and V0 were 0.6 mm and 1.6 ram, respectively. A

maximum number of exponentials used in the approximation

was five. The exact Green's function is obtained by applying

the image principle in the space domain. Fig. 5 shows the

comparison. The maximum relative error was 0.0033.

Finally, we note that considering the forms of (15) and

(16) it can be seen that the exponentials used to approximate

the Green's function in the spectral domain correspond to the

weighted images in the space domain.

IV. SOLUTION METHOD FOR THE INTEGRAL EQUATION

Once we obtain the approximated Green's function, the

integral (1) can now be solved by the moment method. First,

discretizing the surface or the cross section of each conductor

with polygonal-type elements, the unknown charge density can

be expanded with the pulse basis functions over the discretized

elements. Then, applying the point matching technique to each

cell, (1) for 3-D problems becomes

NT /" t"

Vi=Zqk// G(xi,yi,zilx, y.z)ds;i= 1,2 ..... NT.
k=l Jds It

(18)

Here, qt is the unknown coefficient to be determined, and Nr
is the total number of ceils used to discretize conductors, sk

is the surface of the kth cell, and point matching is applied at

the center of the ith cell (zi, yi, zi). The similar equation can

be also obtained for 2-D problems. Assuming that all possible

ground planes are held with the same potential and the ith cell

is in the jth conductor, Vi is the voltage difference between the

jth conductor and the ground plane; in the case of no ground

plane, any one of the existing conductors can be chosen to be

the ground reference to define the voltage. For the capacitance

computation, V_ takes the value of 1 or 0 depending on the

excitation of the jth conductor.

With manipulations in V, Yi, and the terms due to the

exponential approximation, the surface integration in (18) can

be put into the following forms:

v/(Z - _,)2 + (v - v') 2+ (_ - _,)2 Ir-_'l

://d,-ft.
(19a)

Similarly, for 2-D problems we have

_cln(v/(x- x')2 + (y- y')2)dl' = fcln('p- p'l)dl'

= fc ln(P)dl'.

(19b)

The evaluations of (19a) and (19b) over an arbitrary polygonal

patch and a line segment are well-known and the closed-form

formulas are given in [19].

Now solving the system of linear equations obtained from

(18) will give the unknown charge distribution in terms of

its basis function. It is important to point out that without the

closed.form expression of the Green's function, the integration

(19) must be performed, theoretically, an infinite number of

+,o_ 1

f13D'+( r I ro) = K,n,.,1 X/(x _ Xo)2 + (y + Yo - 2d.) 2 + (z - zo) 2

N +
r_,rL,l

+ Z +,i _ 1Cm,rl, fl

i=z 'V/(z - z0) 2 + (Y + Y0 - 2d, -_ "+'i_m,n,z_2:+ (z - zo) 2

f_D,+(plpo) = K,,_,,m+,c_.In(x/(x - x0)'+ (Y+ Yo - 2d_)2)

N_,n,z

it=Z vrn'n'l -- t*m'n'11 )"

(16a)

(16b)
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TABLE I

Compuumoa

141.38 -21.493 --0.9924]
-21.49l 92+951 _17.844 i(pF/m)

--0.9023 -17.844 87.495 J

Del_ee ettl+ 14]

[142.09 -21.765 --0.8920"]

-18 098_ (pF/m)-21.733 93.529 +

L-_89OO -18.097 87.962

Single Microstrip (w/h=l,tr=4)

770 I0 ..... T " '
+

7611 10" "................................................................ = _ ......

766 I0"z .......................-- ............................

76,jo+_ __762 l0 +z ..........

++_:o........ /._ ......................... ............
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Number of Basis Functions

Fig. 6. Comparison of the present method with the spectral domain approach

asa funcuonof the numberof basisfunctions.

times. For most pract!cal problems, the time to construct the

matrix of the linear equation (moment matrix) takes the major

portion of the computation time. We have significantly reduced

this computation time by approximating the Green's function

with a finite number of exponentials.

V. NUMERICAL EXAMPLES

A computer program was developed based on the above

algorithm, and it is capable of handling an arbitrary number

of dielectric layers and conductors and designed to read mesh

data from a conventional mesh generator to allow computation

of the complex geometries and meshes. The algorithm is tested

for both 2-D and 3-D problems, and the equivalent crossover

capacitance of two orthogonal microstrip lines is computed

based on the integral equation with both 2-D and 3-D Green's
functions.

A. 2-D Problems

First, a simple microstrip capacitance is computed to verify
the method, and the results are compared with those for

the spectral domain approach (SDA) in Fig. 6. The spec-
tral domain method used for comparison solves the integral

equation iteratively in conjunction with the minimization in

the boundary condition error. A more complex geometry, a

three-conductor system in a layered medium, shown in Fig.

7, is also computed. The number of basis functions used
was 50 for each conductor. In both cases, the maximum

number of exponentials used to approximate the coefficient

function K_,,,_ was 7. Comparison with the results in [4] is
shown in Table I. In [4], the spectral-domain Green's function

is numerically integrated to obtain the corresponding space-
domain Green's function using a Gaussian quadrature formula

in conjunction with analytical asymptotic extraction.

'?,+:+" +°I
Fig. 7. Three conductors in a layered medium. All dimensions of conductors

and spacings are identical.

2

6 7 8 9
t_ ].s

r---1 1"7 r-'-i v-l r--n '
I 2 3 4 5

6 9 12 15
60(3

f.r= 11

Fig. 8. Ten conductors in a layered medium. All dimensions of conductors

and spacings are identical, and all units are in micrometer.

TABLE H

307.13 -41.2 -II.34 -6.28 -5351 -218.8 4.966 -1.385 -0.814 -0.729

-41.20 319.6 -28.04 -7.79 -4.987 -5.025 -216.95 -3.54 -0.985 -0.666

-11.34 -28.04 310.5 -24.29 -8.587 -1366 -3.503 -21g.4 -3.18 -1.148

-6.279 -7.79 -24.29 303.5 -24.73 41.798 -0.946 -3.164 -219.4 -3..M5

-5.351 -4.988 -8.588 -24.73 290.5 -0.708 -0.627 -l.12 -3.325 -221.3

-218.8 -5.01 -1.363 -0.796 -0.709 231.7 -2.074 -0.393 42.182 4).134

-4.954 -216.97 -3.494 -0.944 -0.628 -2.074 232.0 -1.19 -0.255 -0.135

-1.382 -3.532 -218.4 -3.157 -1.12 -0.393 -1.19 231.8 -0.8752 -0.242

-0.813 -0.982 -3.174 -219.5 -3.32 -0.182 -0.255 -0.875 231.6 -0.763

-0.729 -0.665 -1.145 -3.34 -221.4 -0.134 -0.135 43.242 -0.763 231.3

A ten-conductor transmission line system above a thick

dielectric substrate, shown in Fig. 8, is also considered. The

total number of 300 basis functions was used to represent

the unknown charges, and nine exponentials were used to

approximate each coefficient function of the Green's function.

Table II shows the computed results. The same structure is

considered in [3] using the free-space Green's function with

the basis functions which incorporate the edge singularities

of the charge near the comers of the conductors. In [3], data

are obtained using 160 and 190 basis functions for conductors

and dielectric interfaces, respectively. The methods used in

[2] and [4] are also employed to compute the same structure

in [3]. According to [3], the methods used in [2] and [4]

resulted in nonphysical values, for instance, negative self-

capacitance values. The method used in [4] took the CPU

times of 89611.19 s on an IBM RS-6000 station with 300

basis functions, whereas, the method in [3] took 458.67 s. On

the same machine, our method took only 85.7 s of CPU time.

For the final 2-D example, a multilayered stripline case,

shown in Fig. 9, is also analyzed. Fifty basis functions are
used to discretize each conductor. We have obtained the values

¢-,
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A
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i ¢r'2"5 _"_''"-'_1 3ram

£t_ I0 0 2ram

Fig. 9. Two conductors in a layered medium with two ground planes.

Dimensions of conductorsare identical.

1

Fig. 10. Geometry. of the test microstrip bend.

-I-

i t?
1'2

!

__t

Cll = C22 = 217.07 pF/m and Cz2 = C2z = -107.76

pF/m. Data obtained from the Ansoft Maxwell software are
Cn = C22 = 217.65 pF/m and Cz2 = Cuz = -108.24 pF/m.

B. Equivalent Capacitance for a Microstrip Bend

In this numerical example, we will use the 3-D Green's

function to calculate the equivalent capacitances for a right-

angle bend of a microstrip line. Although the equivalent

capacitance or excess capacitance due to the right-angle bend
discontinuities has been well-studied [20], [21], it is consid-

ered here again to verify the present method. An accurate

characterization of a microstrip bend involves the semi-infinite

microstrip lines which, in turn, requires different expressions
for the Green's function. However, since the effects of the

discontinuity are localized, it is expected that the equivalent

capacitances can still be accurately calculated by truncating
the semi-infinite lines with finite lengths.

Referring to Fig. 10, the excess capacitance C,x can be

defined by

C,x = lim [GT -- Cunif(ll W 12)] (20)

11+2_1t1,2

where CT is the total lumped capacitance and Cunir is the

capacitance per unit length for the uniform microstrip line.
Setting V to 1 in (18), (20) can be directly written in terms

of charges:

C,_ = Qex = lira [Qr -- Qunif(ll "1" /2)]- (21)

/1,2_|_,2

Here, Qr is the total charge on the conductor, and Quail" is

the charge per unit length for the uniform line. The excess

TABLE HI

C_rlpuUlhon Silvester et al [201

Cu (fF) 65.3 72

C,,,,.,_l,z,a 0.359 0.386 0.363

(Cex IIC_I / *h)l

Guptaet al [21]

67.65

Conductor 1

.-.._ w2 _---

1.4.---

II

I

I

--2_
I

I I Conduclor 2

1

Center Lines

Er2

frl

\N\\\\\\\

(b)

Fig. l I. (a) Planar and (b) cross-section_ views of the microstrip crossover.

capacitance was computed for w = 1.5 ram,h = 3 mm and _,. =

4.5, and lz,2 and l_,2 were 5 w and 20 w, respectively. A total
of 456 nonuniform cells were used to mesh the geometry, and

Cunil", which was calculated using the 2-D Green's function,

was found to be 62.12 pF/m. Table III compares the program

results with those obtained from [20], [21]. The result from

[21] contains a maximum error of 5%, while [20] contains 4%

according to their analysis. The graph reading error must also

be considered in [20].

C. Equivalent Capacitance for a Microstrip Crossover

In the following, we seek the equivalent capacitances for

a microstrip crossover. Fig. 11 shows the geometry of the

crossover considered, and Fig. 12 shows the equivalent circuit

representation. In Fig. 12, two lines are uncoupled except c m

at the location of the crossover. Here, instead of constructing

the integral equation in terms of the total charges, as we did

for a microstrip bend case, we will formulate the integral

equation in terms of the excess charges. The major drawback

of the prior approach is that since the excess charge due to the

discontinuities is usually much smaller than the total charge,

the final accuracy in terms of the excess charge is much worse

than the accuracy obtained for solving the total charge.

Based on the equivalent circuit representation in Fig. 12,

the integral equations after applying the boundary conditions
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C)_ ..t._ 0

±

Fig. 12. Equivalent circuit representation for the microstrip crossover shown

in Fig. I I.

on the surfaces of the conductors can be written as follows:

2D unif 3D ex 3D exrm,,,q,,>+ ,<,,,>+

(22a)

k/c;,_,,;,)+(a,_,,,;)j
2D unif 3D ex 3D ex 1rm,,,,,,>+<c,,,,,,,)+ ,,,,)

/ i¢'22D _unif\ _L /¢u3D .ex ± /p3D ..x\ J.
L \_'_22 , "/22 1 T V.,12, i/21 -r- V, J22 :,-/22/

(22b)

Here, the superscript T denotes the total quantity on the line

while the superscript unif denotes the quantity per unit length
of an isolated line. The integrations over the Green's functions

are symbolically written by (., .), and the excitation voltage is

assumed to be 1. The subscript ij used in the Green's functions

Gij denotes that the source is located at the ith conductor,

and the boundary condition is applied at the jth conductor.

The subscript ij used in the charge density functions qij
denotes that qo is the charge density at the jth conductor with

excitation at the ith conductor. Now noting that (G_D, qunif)
is equal to V, we can rewrite (22) as follows:

: L + j a,,,)
[_<%,:,,,,., +3D ex 3D ex "

Since the excess charges are expected to be localized, we

can truncate the domain of the basis functions used to expand

the excess charge density over distances ll and 12 from the

crossover junction (see Fig. 11(a)). Now using pulse basis

functions and the point matching technique, (23) can be put

into the following matrix form:

,:
V22 t'm [M2, M=_ J/ql_ q_ J

(24a)

£m

4

4

TABLE IV

_.1 = 2, and,_.2 = 2 _.1 = 4, and _2 = 2

69.17 fiF) 59.748 (t17)

-55.40 (IF) --48.580(iF)

-58.94 (IF) -53.968 (IF)

TABLE V

COMPARISON OF RESULTs FOR FIG. I1 WITH er] = _r2 = 2

Papatheodorou et al.

[ 1O] Computation

c m overhl _ 1.672 1.776

h_c, - 1.345 - 1.321

-I.296" -1.513

* This entry is incorrect, and it can be verified b_' considerin_ J l0, Fi_. 4].

where

t

[Vu]b = - J¢i Gf_(pi I p')dl'

= - f_, G,2 (P, I p')dl' (24b)[V=2]ij 2D

Mklij = is Sj aPkD (I"i I rl)d,.q# (2*)

[ ]'q_X = ex ex exqij,1, qij,2, " • ", qij,.%'a_.,

q_nlf [ unif unif unif ] ¢= qii,2 ,''' qii,.'V2D.i[qii,1, , . (24d)

Here, [A]o is the jth element of the ith row of the matrix A,

and NaD,i and N2D,i are the number of patches and the number
of segments used to discretize the surface and the cross section

of the ith conductor, respectively, q_nif can be obtained by

solving the 2-D problems for each isolated microstrip with the

excitation voltage set equal to 1. Then (24) can be solved for

the excess charges. Finally the equivalent excess capacitance
can be found by

c_ = _ Areai_" qi_k
k----'l

(25)

where Areaik is the area of the kth patch in the ith conductor.

For a numerical example, the same structure used in [10] is

considered, where hi and h_ were 4 mm and 6 mm, the widths

of both strips were 0.04 hi, respectively, ll and 12 were 10

h_, and 800 nonuniform patches and 40 pulse basis functions

are used to solve the 2-D and 3-D problems, accordingly.

Two different dielectric configurations are considered and the
results are shown in Table IV. The maximum number of

exponentials used for each coefficient function was seven for
%
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Fig. 13. Plots of the magnitudes of the excessive charge distributions for (a) qll,t" (b) q2t,_z (c) qt2"et and (d) q22_z with erz = 4. and t,2 = ..'_ x and

> denote the transverse and the longitudinal, respectively.

both cases. The result with e,1 = e,2 = 2 are compared

with the results from [10] in Table V. In Table V, c_ and c_

are the capacitances per unit length of the isolated wire lines
with radii equal to 0.25 w and e,1 = e,-2 = 1. In [10], ll

and 12 were 10 hi; hence, their value of c m is expected to

be smaller than ours as shown in Table V. The 3-D plots of

excess charges are shown in Fig. 13. The Green's function used
in [10] is based on the image principle in the space domain

and involves an infinite summation. According to [10], only

ten terms were sufficient to evaluate the infinite summation

for this particular structure, where lines are extremely narrow.
However, for wider microstrip lines, the number of terms to

compute the infinite summation will be much larger; this can

be easily seen from the expression of the Green's function in

[10].

VI. CONCLUSION AND FUTURE WORK

In the design of VLSI circuits, the capacitance computation

plays an important role, and the present method can be

conveniently combined with CAD tools. Since the Green's

function depends only on the processing parameters, such as
the thickness and number of dielectric layers, the dielectric

constants, and location of ground planes, the Green's function

approximation has to be performed only when the processing

parameters are changed. Then, the approximation result can

be used to compute capacitance parameters throughout the

design period.
In the computation of parasitic or excess capacitances, semi-

infinite microstrip lines are often encountered, and to have
accurate results, as mentioned earlier, the integral equation

is often formulated in terms of the excessive charges which,

in turn, requires the Green's function due to the semi-infinite
lines. The authors are currently studying the generalization of

the present method for such a Green's function in a layered

medium.

APPENDIX A

THE REAL-VALUED EXI_NENTLM. APPROXIMATION

BASED ON THE RELAXATION OF CURVE FTITING

First,we willassume thata functiony(x) to be approxi-

mated isrealvaluedand nonoscillatoryand,furthermore,that

itsasymptoticvalueiszero.The latterassumptioncan easily

be satisfiedifthefunctionislimitedatinfinity.Our goalisto

find the right-hand side of

y(x) _ A(x) = _ fi(x) = A--,,=I '
i=l

(AI)

Let w us for a moment assume that each first-order function fi

approximates the original function y at some interval around

one of the approximation points and is decreasing fast enough

so that its value is negligibly small at the approximation points

corresponding to larger values of the argument x. Then, we

can safely determine one of the first-order functions, say fl, by

neglecting contributions due to the other first-order functions,

which are as yet unknowns to be determined. The parameters

of fl can be easily obtained by curve fitting two values of y

for some large value of x. In a similar manner, we can find

the parameters of the other first-order functions; however, this
time we have to take into account contributions due to the

previous ones which are already known.

From the above argument, given 2N approximation points,

the equations used to determine the parameters for the ith

first-order function are then written by

Ai = 2r In (yi(2X2i_l)/Yi(X2i)) (A2)
X2i -- X2i_ 1

Ci = e-'X'x2'-_yi(x2i-1) (A3)

where

yi(xj) = yi-l(xj)- fi-l(xj); j = 1,...,2N. (A4)

In the above, yo(Xj) is equal to y(x./). Let us now consider
the case in which the value of a first-order function is not

negligible at the other approximation points. In this case, if we

perform the above procedure, there will be some difference

between the original and the approximated function since

we have ignored contributions due to some of the first-order
functions. In such a case, to reduce this difference, we can

iterate the above procedure including the contributions due to
all other first-order functions which were obtained from the

previous iteration. Thus, for the kth iteration, (A4) must be
modified as

i-1 N

1=1 1=i+1

j = 1,...,2N. (A5)
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Finally, to demonstrate the method, the following testing

function is approximated and the results are shown in Fig. 14:

_-2x

y(x) = _ + e -=. (A6)
v"i + z

As illustrated in Fig. 14(b), to find the exact location of the

pole at -1, we need a large number of iterations; however,

since our goal is to approximate the overall function, only a
few iterations were needed to approximate the function. To

locate the poles exactly, one should use other methods such as

those based on pencil of functions or the Prony approximation.

APPENDIX B

Locationof Pole vs. # of Iterations
" 1.05 " 1 7 _ r 7 " d r _ r " " _ r r i '

t_ -I.07

.__

-I.09

-1,1

-I.II

-IA2 ' J ' ' ' ' '

2 4 6 8 10 12

Number of Itenltions

Co)

Fig. 14. (a) Comparison of approximated and exact values of (A6). (b)
Convergence of the location of the smallest pole (-1) with the number of
iterations.

It can easily be shown that if y(x) had N distinct eigen-
values, by iterating the above procedure, the approximated

function will converge to the original function. However, in

general, the approximating function will never be exact and

the iteration must be stopped at some point at which the

approximated function is optimal in the sense of curve fitting.

Since our curve-fitting algorithm, most likely, has the biggest

relative error for the values of x between X2N_ 1 and x2.,_', one

can check the approximated value with the exact value at any

point in this interval for the convergence criterion. In some

cases, if the desired accuracy can not be achieved, then one

should increase the number of exponentials. This case can be

determined by checking the difference between the computed

parameters of fi (k) and f(_-l).

The described method allows one to find the parameters of

an approximating function one-by-one directly without solving

a system of nonlinear or linear equations and does not require

an original function to be monotonic. Moreover, the limiting

values of the approximated function match exactly with the

original function.

STRIP TRANSMISSION LLNE CASE

Solving Poisson's equation with separation of variables,

the Green's function for the strip transmission line case with

the distance h between two ground planes can be written as
follows (see [22]):

±
_c

afx.ylx'.V) : _ lsin (nr, y)
7rE n \ h /

rt_l

-- . (A7)

The above expression for the Green's function can be easily

integrated analytically over the pulse basis function analyti-
cally. This summation is quickly converging, and only a few

first terms are needed; for instance, four digits of accuracy can

be obtained using less than five terms for Ix - x'l/h > 0.5.

However, when Ix - x'l/h is small, the summation converges

rather slowly, and the use of this Green's function expression

should be avoided. In such cases, we can use the following
closed-form Green's function:

1

G(x, y Ix', y') = _ In

(A8)

This expression for the Green's function can be obtained using

the conformal mapping and the method of images [18]. The
major disadvantage of this expression is that the closed-form

integration over the pulse basis function is unappealing; hence,
the numerical integration scheme is unavoidable. Therefore,

this form of the Green's function must be only used when

Ix- z'l/h is small. As shown in [1], to integrate (A7)

numerically, it is convenient to rewrite this expression by
extracting the singularity as

= _leln[(x - x'):+ (y - y')_]G(x,y Ix',V)

+ g(x. y I x', y') (A9)

g(z, y fx',y') = _-leln
[(x-x')2+(y-Y')2][ sinh_[_=2-_][_(_-=')] +sin2 [_]]]

sinh_L 2h J +sin2 [_]

(A 10)



Oil et al' CAPACITANCE COMPUTATIONS IN A MULTILAYERED DIELECTRIC ,_,IEDII_'M }aS3

where ¢A lO), shown at the bottom of the previous page.Now

the first term in (A8) can be analytically integrated using

(20(b)), and the second term can be integrated numerically.
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Computation of the Equivalent Capacitance

of a Via in a Multilayered Board Using

the Closed-Form Green's Function

K,,ung S. ()h. Jose E. Schutt-Aine. Raj Mittra. and Bu Wang

Abstract--A method based on the quasi-static approximation for

computinR the equivalent capacitance of a via is presented in this paper.
The geometry of a via consists of traces, pads and a perfectly conducting
cylindrical rod: the via is buried in a multilayered dielectric medium with
optional relerence Iground) planes. The total number of traces, pads. and
ground planes can be arbitrary, as well as the angles and cross sections.
The method is based on the excess charge formulation of an integral
equation applied in conjunction with the recently developed closed-form
Green's function.

I. INTRODUCTION

Although a via is one of the most common discontinuities en-

countered in high-speed integrated circuits, it has not received as
much attention as _ome of the other discontinuities, e.g.. open-

end terminations, bends, and junctions. This is due mainly to the

nonplanar and complex three-dimensional (3-D) geometry of the via.
which has often been simplified in the works published previously

[I]-[31. For instance, a via penetrating through a single relerence

(ground) plane with two wire traces has been considered in [1],
and without any traces in [2]. while a via above a reference plane

with two wire traces but without a through-hole reference plane

between these trace_, has been investigated in 13]. A novel equivalent

network model, which accounts for the frequency dependence, has

been proposed in 141 and has also been applied to the problem

of coupling between two adjacent vias in [5]. in [11 and [31, an

integral equation has been formulated in terms of the excess charge
distribution to compute the equivalent (excess) capacitance. In this

paper, this excess charge formulation is further generalized for vias

with more complex geometries than has been analyzed hitherto and

is applied in conjunction with the closed-form Green's function to

analyze vias embedded in multilayered dielectric media.

A closed-form Green's function for a multilayered dielectric

medium was first introduced in 16]. This Green's function utilizes

a finite number of complex images and avoids the evaluation of a

nested tntinite series expression required in the computation of the

exact Greens function for a layered medium. In [7], a closed-form

Green's function based on weighted real images was proposed and

was used to compute the equivalent circuit of a stop crossover. In

[8]. this closed-form Green's function based on weighted real images

was further generalized to handle a semi-infinite line and then applied

to compute various strip junction discontinuities. In this paper, the

closed-form Green's function discussed in 18] is employed to compute

the equivalent circuit for a via in a multilayered dielecmc medium.

!1. GENERAL STATEMENT OF THE PROBLEM

To illustrate the geometries of vias considered in this paper, a via

comprised of three traces and one reference ground plane is shown in

Fig. I(a). In general, a via can pass through Ng reference (ground)

planes and YG traces, and .Vp pads can be attached to the via where

Manuscript received April 10. 1995: revised November 12. 1995.
The authors are with the Department of Electrical and Computer Engi-

neering. Electromagnetic Communication Laboratory, University of Illinois.
Urbana. IL 61801-2991 USA.
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Fig. I. (a) The geometry of a via. and (b) its surrounding muhilayered
medium.

N_. N,, and N_, are all arbitrary. The vias are embedded in a multi-

layered medium consisting of 3"_ (arbitrary) dielectric layers, which

can be backed by two optional reference planes as shown in Fig. lib).

To distinguish between these optional reference planes and those

associated with the via. we will reserve the term "'reference plane" to

designate an optional top or bottom reference plane, and use the term
"reference conductor" to denote other reference planes. It is evident

that the reference conductors must have perforations to avoid any

contact with the vias: however, the two optional reference planes are

assumed to be solid. To simplify the numerical computation, we as-

sume that all of the conductors are infinitely thin and that the shapes of

all the pads and perforations in the reference conductors are circular.

A quasi-static equivalent circuit representation of the via shown in

Fig. I is given in Fig. 2. This paper will only address the problem

of computing the total equivalent capacitance C,. The method to

compute the equivalent inductance of a via can be found in [9].

In ,Section Ill. an integral equation is formulated in terms of the

excess charge distribution using the closed-form Green's function,

and the method of moments (MoM) is subsequently employed to

determine the unknown charge distribution. A detail discussion of

the closed-form Green's function and the corresponding expression
can be found in [8]. In Section IV. several numerical examples are

presented to verify the proposed method.

II!. FORMULATION OF AN INTEGRAL EQUATION

An impressed potential on conductors results in free charge accu-
mulation on the surfaces of conductors, and the electrostatic potential

0018-9480/96505.00 © 1996 IEEE
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TABLE 1

EQUIVALENT CAPACITANCES FOR ViAS SHOWN IN FiG 3. UNITS ARE Jr; pF

Computed Result

Others

EI=E2=£ o

0.3841

0.3701 [31

Fig, 3(a)

¢1=4 co, _'.'_ G,

1.233

t.28 [31

Fig. 3(b)

E/=_-,--_4G, ,f/=4 5 E,.,,.£2=5.4£o

II

9.952 12.3 I

635 Ill 7.85 Ill

Fig. 2.

0

12

v I

L,.z2e/_ 0

'T"

ce,3

A equivalent circuit representation of the via shown in Fig. I(a).

o(r) at any point except inside conductors is then related to this

surface charge density q(r) via the following integral equation

o(r)=.f_G:_r)(r I r'lq(r')dr' = (GaD.q) (1)

where £._ denotes the surfaces of all conductors, including the via

and reference conductors. G:+D(r I r') is the 3-D closed-form Green's

function for a multilayered medium, and it accounts for polarization

charges on dielectric interfaces and free charges on the surfaces of

reference planes [8]. The integration is symbolically written as (...)

to simplify the notation. Next. the charge distribution over the whole

structure analyzed is decomposed into q,. (r ). q'o (r ). q_ (r ). and _ti_lr /

where q,4 r! is the charge density on the surface of a via hole. and

%( r _. ,1;( r L and q',(r) are the charge densities on the ith pad. trace.

and reference conductor, respectively. Equation (I) can be rewritten

as

.N p

o+,.)= +_c,,"'+".,.,,,) + _(c,:".,+,;,)

,Xp \a

+ _<c,"'". _;>+ _<a:'" ,j;>. (2)
_-----I l=t

Next. the charge density ql (r ) is further decomposed into the uniform

charge density q,,.,,t,tr) and the excess charge density q't......... (r)

q;(r) = ql `"'l '(r) + q', "'" .... (r}. (3)

Here. ,li'"'l'(r ") is the uniform cha_e density on the ith trace

under the assumptions that it is infinite in both directions, no other

traces are present, and the reference conductors have no perforations:

this charge density is computed by solving an appropriate two-

dimensional (2-D) problem. Since the reference conductors become

uniform planes without any perforations for this 2-D problem, the

potential distribution on the region above the reference conductor

is not affected bv the region below it and vice versa. To solve

for ,f"" 'qrL it is then expedient to introduce a new medium

surrounding the _th trace. As a consequence, the medium employed

in the 2-D problem is generally different from that of the 3-D via

problem, and could, in fact. be different for each trace. Once the

appropriate medium has been chosen. ,/i'"t '!,'1 can be obtained by

using the method described in [7]. The resulting ,J_'"'f'lr) yields

the capacitance per unit length for the ith transmission line in the

equivalent circuit representation shown in Fig. 2.

In the process of determining 91'"'"'(r). the 2-D closed-form

Green's function G_t)'(p I po) is used to formulate an integral

equation for a 2-D problem |7]. However. in the integral t2) for

computing the equivalent capacitance problem, the uniform charge
density qi'"d'lr) resides on the ith trace, which is only a semi-

infinite line. It is therefore necessarv to employ G _''' .... <,' I r.. _1

to compute the potential due to 9_'"':'(r) [8]. Using (3). (2) can be

rewritten as

o(r)- _V,(G....... .q:"'>

.%'p

= <G_._, ) + Z(a_').q;)

.'v¢ '\'9

+ _<c, :+°.,j; ....... >+ _<a +_. q;>. (+)
,=1 I=l

If we set the via potential to be oo with respect to the reference

conductors and planes, o(,') becomes oo on the surfaces of the via

hole. pads. and traces, and is equal to 0 on the surfaces of reference

conductors. Hence. once qi'"'_'(r) has been determined, all of the

quantities associated with the left-hand side of (41 can be considered

to be known at the sunhce of the conductors, and the method

of moments can be applied to solve <4). The various integrations

appearing in (4) can be evaluated analytically for pulse-type basis

functions using closed-form formulas given in [8].

Once the unknown charge distributions have been determined, the

equivalent (excess) capacitance C, can be obtained by using the

following expression which involves the integrals of these charge

distributions

.\'p

-X t \ v

+ q'," ...... r'),h" + 'l,,t ),it' (5)
+_ r., -- _,

where O-,. is the surface of a via hole. _._p,. ';.),.,. and _.)+,, and are the

surfaces of the ith pad. trace, and reference conductor, respecttvel>.

IV, NUMERICAL EXAMPLES

We will now present two numerical examples to illustrate the

application of the method presented above to the computation of the

equivalent capacitances of two via structures, one with a reference

plane and the other with a reference conductor. The detailed geome-

tries of the two via structures are shown in Fig. 3. The computed
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Fig. 3. (a) A two-trace via with a reference plane and (b) a two-trace via
with a reference conductor. All dimensions are in mm.

applicable to ,,la geometries with or without lhrough-hole relerence

conductors. The recently developed closed-lotto Green's, luncuon _as

employed to circumvent the time-consummg evaluation of a nested

inhmte _,eries. required tn the evaluation 131.
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Analysis of Edge Coupled Strip Inset Dielectric Guide

excess capacitances for Fig. 3(a) with I) f_ = :., = r j and 2)

-I = 4_'_j and _% = _J; for Fig. 3(b) with 3) _1 = !,_ = 4_-0 and

4) -_ = 4.5-_j and -.': = 5.4_-% are listed in Table I along with data

obtained from I1] and [31. In [11 and 131. the strips were replaced

by the equivalent wires of radii which are one-fourth of the widths

of the strips. In our computation, the lengths of all traces have been

truncated to 2.5h. whereas the width of the reference conductor has

been truncated to 1.51, with h and I being the height of a via hole

and the length of the traces. The truncation of traces and reference

conductors is valid since the excess charge distribution decays rapidly

as we move away from the center of a via. A total of 263 and

687 unknowns were used for the vias shown in Figs. 3{a) and (b),

respectively. As shown in Table I. the data for the via shown in

Fig. 3(a) agree well with the published results. However, the data

for the via shown in Fig. 3(b) are considerably different from the

results reported elsewhere. Unfortunately, no experimental result for

this structure is available to establish the relative accuracy of these

results associated with Fig. 3(b).

V. CONCLUSION

A method to compute the equivalent capacitance of a via, which

is based on an integral equation formulated in terms of the excess

charge formulation, has been presented in this paper. The method is

Z. Fan and Y. M. M. Antar

Abstraet_Tbe edge coupled strip inset dielectric guide is analyzed using

the extended spectral domain approach. This structure, as compared to

microstrip line, has several interesting features and can be very useful for
microwave and millimeter wave applications. Validity of the approach is

established by comparing numerical results with measured data. As many
structural and material parameters can be chosen, a wide fundamental

mode bandwidth and a broad range of characteristic Impedances can be

achieved, leading to great flexibility. The dispersion in fundamental mode

propagation constants and Impedances is found to be very low. With

suitable choice of different permittivities for two dielectric layers, the

same propagation constants for two fundamental modes can be obtained.

This property is desirable for directional coupler applications.

1. INTRODUCTION

Microstrip line has been the most popular transmission medium

used for constructing microwave and millimeter wave circuits [ I ]. it

is well known that one of the problems with open microstrip circuits

is the excitation of surface waves from discontinuities in the circuits
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The authors are with the Department of Electrical and Computer Engineer-

ing, Royal Military College of Canada. Kingston, ON K7K 5L0, Canada.
Publisher Item Identifier S 0018-9480(96)01462-7.

0018-9480/96505.00 © 1996 IEEE



EFFICIENT TRANSIENT SIMULATION OF

DISTRIBUTED INTERCONNECTS

Jose E. Schutt-Aine and Dmitri Kuznetsov

Electrical and Computer Engineering,
University of Illinois,

Urbana, IL 61801,
USA

I. Introduction

The electrical performance of high-speed integrated circuits and digital networks

strongly depends on the behavior of interconnects between various components of these

systems. The prediction of such performance can only be achieved by the used of

computer-aided design and simulation tools. The simulation of high-speed digital circuits

has gained a significant role in the past few years since it is critical in the evaluation of noise

levels, signal corruption and signal delay in fast switching circuits. This paper explores the

various aspects and techniques for transmission line simulation; in particular, two different

methods are described: the scattering parameter method and the optimal method.

Two main aspects in the solution procedure must be distinguished, namely the line

model and the transient simulation scheme. In the transient simulation step, the time-

domain representation of the line model is obtained to yield the transient solution.

Two different classes of models can be employed: circuit models and non-circuit

models. Non circuit models cannot be directly implemented into a circuit simulator. Circuit

models can be directly incorporated into a circuit simulator; they relate voltages and currents

at the line terminals and are independent of the terminations.

Further, two types of line characterization can be identified, namely closed-loop and

open-loop characterizations. A closed-loop characterization such as Z- Y- H- and S-

parameter characterizations results in complex oscillating transfer functions and transient

characteristics. An open-loop characterization--in terms of the propagation functions--

separates forward and backward waves and results in simple transfer functions and transient

characteristics.

II. Scattering Parameters

Scattering parameters have been extensively used in microwave applications for the



measurementof high-frequencycircuitsaswell ascircuit analysis. Theadvantagesof the

scatteringparameterapproachresidein theflexibility in thechoiceof thereferencesystem

which can be adjusted to match certain characteristicsof the network under study and

simplify the analysisandthecomputations[1]-[3]. A direct consequenceof thispropertyis

the greatercomputationalstability andthe simplicity of the closed-formsolutions. More

specifically, losslessand lossy transmissionlines can be analyzedin conjunction with

nonlinear terminations to yield solutions in which backward and forward waves are

separated(seeFig. 1).

Lossy
Arbitrary Nonlinear andDispersive Nonlinear Arbitrary
Source Load Line Load Source

x__ x:l
Port 1 Port 2

Fig. 1.

Consider a transmission line of length I with complex characteristic impedance Zc and

propagation velocity v. This transmission line is connected to two ideal lossless reference

lines as shown in Fig. 2, it can then be described in the frequency domain through its

scattering parameters using

B1 = SlxA! + Sl2A2 (la)

B2= S21AI +$22A2 (lb)

where A1 and A2 are the incident voltage waves in the reference line of characteristic

impedance Zo. B 1 and B2 are the reflected waves due to A 1 and A2 respectively. It can be

shown that

where

Sll = S22 = (1 - e-2jt°l/v)p (1 - p2)e-jt°l/v
1 - e-2jc°Vvp 2 S 12 = 821 = 1 - e-2jc°l/vp 2 (2)

Zc- 7-0 (3)
0 =Zc



In the time domain this correlates to (lowercase characters for time-domain variables'

bl(t) = s i l(t)*al(t) + s 12(t)*a2(t)

b2(t) = s21(t)*a l(t) + s22(t)*a2(t)

where sij(t) is the time-domain Green's function associated with Sij. These equanons

combined with the terminal conditions

(4a)

(4b)

are

al(t) = Tl(t)gl(t) + Fl(t)bl(t)

a2(t) = T2(t)g2(t) + F2(t)b2(t)

(5a)

(5b)

Reference
Line

A1

B I

Test
Line

--- x--O x=l

Fig. 2.

Reference
Line

_ B 2

-_ A 2

where T l(t), T2(t) are the transmission coefficients, l"l(t) and F2(t) are the reflection

coefficients and gl(t) and g2(t) are the time-domain expressions for the voltage sources.

Tl(t), T2(t), Fl(t) and F2(t) are time-dependent and are related to the terminations Zl(t) and

Z2(t) of Fig. 1 which may be the time-domain representations of reactive elements or

linearized active circuits. The convolution operation is defined as

t

sij(t ) * aj(t) = fsij(t - "_)* aj (a:)d'c
0 (6)

When time is discretized the convolution becomes

t

sij(t ) * aj(t) = Y.sij(t - z)aj(,)Ax
"_=1

(7)

where AX is the time step.

we isolate the term containing aj(t)



t-I

Sij(t ) * aj(t) = sij(0)aj(t) + Y, sij(t - "_)aj(_:)Ax
"r=l

(8)

we then define the history term as

t-I

Hij(t ) = _sij(t - I:)aj(z)A'I; •
1:=1

History (9)

Define s'ij (0) =sij (0)Ax we finally obtain

bl(t) = S'll(0)al(t) + s'12(0)a2(t) + Hll(t) + H12(t) (10a)

b2(t) = s'21(0)al(t) + s'22(0)a2(t) + H21(t) + H22(t) (10b)

When combined with the termination conditions of (5), the solution for the independent

waves can be extracted to yield

al(t) = [1-F2(t)s'22(0)] [Tl(t)gl(t)+Fl(t)Ml(t)] Fi(t)s'12(0)[T2(t)g2(t)+F2(t)M2(t)] (lla)
A(t) + A(t)

a2(t) = [1-Fl(t)S'll(0)] T2(t)g2(t)+F2(t)M2(t)] F2(t)s'21(t)(0)[Tl(t)gl(t)+Fl(t)Ml(t)] (llb)
A(t) + A(t)

A(t ) = [ 1-F l(t)S'l 1(0)] [1- F2(t)s'22(0)] - F 1(t)s'12(0) F2(t)s'21(0) ( 11c)

with M! (t) = Hll (t) + H12 (t) and M2 (t) = H21 (t) + H22 (t). The total voltages and

currents at the ports can be recovered from the voltage waves using the relations

vl (t) = al (t) + bl (t) (12a)

v2(t) = a2(t) + b2(t) (12b)

al(t) bl(t) (12c)
il(t) = --_---- Zo

a2(t) b2(t) (12d)
i2(t) = Zo 7-0

In general, the frequency domain scattering parameters can be calculated from the line



parametersusing equations(2); next an inverseFourier transformpermits to extract the
time-domain Green' s functions which can then be usedto calculatethe voltage waves.

Most of the computations reside in the evaluation of the convolution history terms as

expressedby (9).

III. The Optimal Method

In [4] the problem of distributed line simulation was analyzed to develop the optimal

method, resulting in the maximum efficiency, accuracy and practical applicability with

respect to the transient simulation of digital circuits. The method handles, in the same

straightforward manner, uniform and nonuniform multiconductor lines with constant and

frequency-depend parameters, including real lines characterized with frequency- or time-

domain data samples. Moreover, an excellent simulation accuracy in the full frequency/time

range, from zero to infinity, is attained with the minimal number of the data samples. The

resulting line model can be directly used in a circuit simulator; the method supports variable

time stepping and has linear computational complexity. The efficiency of the optimal

method allows for an accurate simulation of realistic circuits, containing thousands of

multiconductor nonuniform frequency-depend lines and nonlinear active devices, with

virtually no increase in the simulation time compared to the simple replacement of

interconnects with lumped resistors.

As shown in [4] and [5], to achieve the maximum efficiency, accuracy and practical

applicability, transient simulation of distributed lines should be based on:

• a time-only formulation;

• the open-loop characterization;

• a device model which does not require to introduce current variables;

• indirect numerical integration;

• the difference approximation based on interpolation.

The detailed description of the optimal method and its application to uniform and

nonuniform coupled lines can be found in [5]-[9]. Here, we shall confine ourselves to a

single uniform line case.

For single uniform lines, the open-loop element characteristic is given by

I I = Yc(0_)V 1 - G 1,

12 = Yc(03)V 2 - G 2,

(13a)

(13b)
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A circuit-diagram interpretation of the line element characteristic.

where

GI =e-Y 1 [212 + G2],

G2 =e-_ [211 +G1],

(14a)

(14b)

Yc =l/Zc is the complex characteristic admittance of the line, and e-_ ! is the propagation

function. Conventions for the terminal voltages and currents are shown in Fig. 3. Figure 4

shows a circuit-diagram interpretation of the element characteristic (13).

The difference approximation [6] is a general method for applying numerical integration

to systems whose differential equations are not available (such as systems characterized

with discrete samples of their time- or frequency-domain responses, or transcendental

transfer functions). The first step of the difference approximation consists of approximating

the responses with the corresponding responses of a system with known differential

equations. For instance, for the scalar frequency-domain difference approximation in the

parallel canonic form, we express the propagation function in terms of rational function as



t ' ]e-YI -- AI + Z ali e-Jttrc'
l+jco/i=l cocli

(15)

where "r is the propagation delay, A I is the final value, the ai's and coci'S are the cut-off

frequencies and partial-expansion coefficients respectively. We also approximate Yc(cO) as

I ' 1Yc(cO) = A2 + Z a2i "
i=l I + JCO/COc2i

(16)

Note that there is no delay term since the transfer relationship of the impedance is

instantaneous.

We use interpolation-based methods [6], [9] to perform the approximation. One of the

methods--the relaxation interpolation method in the parallel form--approximates the

original function in terms of a sum of basis functions

L

g(cO) = EI_)i(cO), (17)

i=l

where g(cO) is the function to be approximated and Oi(cO) are the basis functions. It is

assumed that the finite values of the basis functions and the finite value the original function

are zero. Let each basis function approximate the original function at some interval around

one of the approximation points and be decreasing so fast that its value is negligibly small at

the approximation points corresponding to larger values of the argument. For the first basis

function this assumes

Ol (c°l) = g(cO] )"

Now, we can write for the next basis function

(18)

_2(cO2) = g(cO2)- Ol(CO2), (19)

and more generally

i-I

_)i(cOi) --- g(cOi)-- E (Dj(cOi)"

j=l

(20)

After the first pass, we can repeat the above procedure, taking into account all the basis

functions obtained from the first pass:



L

(_i(03i) _ g(03i)- ,','_ (_j((Oi)'

j=l
j#i

(21)

After this second pass, the difference between the original and approximating functions

will be reduced, because an influence of all the terms was accounted more accurately during

the calculation of the approximation parameters. The procedure may be repeated to achieve

a desired accuracy.

The following summarizes the steps involved in applying the real-part parallel relaxation

interpolation method to Yc(03). In this case, Yc(o) is being approximated as

I _ l+jo/03ciaiYc(03)= A +i=t

Let g be the real part of Yc, then

aig(03)= A + 032
i=l 1+ / 0,)ci

1. Choose approximation interval: 2L+I frequency points.

2. Sample original function at the frequencies 03k

3. Reverse the order of the samples.

4. Initialize ai = 0, 03i = 1, i = 1, 2 ..... L.

REPEAT until a desired accuracy tolerance is attained

(22)

(23)

7= 03m_x ,k=0, 1 ..... 2L.

A = g(03max ) - E
aj

2 2'
j=l 1 + 03max/03cj

(24)

FOR

i runs as 1, 2 ...... L

032 = 0i(032i){1)_i- 0i(032i-1)¢D2i-1

0i (032i-1) -- 0i(032i) (25)

a i -'0i(f_2i) 1+-77Y-/,
O_ci )

(26)

where
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curves) functions.

L aj
Oi((t)k) = g(_k ) -- A - Z

j=l I+(02/0")2'
j#i

(27)

End of FOR loop,

End of REPEAT loop.

Figure 5 shows a typical 5th-order approximation of the dynamic part of the propagation

function.

The indirect numerical integration [7] is a class of numerical integration methods based

on the analytical relationship between the continuous and discrete domains. It has ideal

accuracy, convergence and stability properties. The approximate rational polynomial

transfer functions represent systems described with finite-order ordinary differential

equations, and can be discretized, and simulated recursively in the time-domain using

numerical integration. For instance, for a system with the transfer function of the form

a,]I7-I(f) = A+ 1 + j60/ eJ°_'i=1 (Dci
(28)



the step-response invariant indirect numerical integration formulas in the parallel canonic

form are given by

L

y[nT] = Ax[(n - k)T] + y__,Ypi [nT],
i=l

(29)

where

Ypi [nT] = a i (1 - e-t°_'T)x[(n - k - I)T] + e-t%Typi [(n - 1)T], (30)

x is the excitation, y is the system response, T is the time step and k is the discrete-time

delay.

After the characteristic admittances and propagation functions have been discretized, the

frequency-domain element characteristic (13) turns into the discrete-time element

characteristic--the companion model--which is used by a circuit simulator to represent

distributed lines, and is recursively updated at each time iteration via numerical integration

formulas.

Figure 6 presents the comparison of the simulation results obtained with the optimal

method and segmentation method (separating delays and losses). The network and line

parameters are: Rl=50 _, R2=l kf2, C=39 pF/m, L=539 nil/m, R=125 f2/m, G=0, 1=0.675

m. The following voltage pulse with linear rise and fall was taken for the excitation: El=4

V (start time ts=5 ns, rise time tr=l ns, pulse width tw=20 ns, fall time tf=l ns), E2=0. The

time-step T=0.5 ns. As can be observed, the results are in excellent agreement.

IV. Conclusions

Two methods of distributed line simulation were discussed--the scattering-parameter

method and the optimal method. The scattering-parameter method permits a straightforward

implementation of voltage wave solutions but is computationally expensive as a result of

convolution calculations. The optimal method results in the maximum efficiency, accuracy

and practical applicability with respect to the transient analysis of digital circuits. The

optimal line model can be directly used in a circuit simulator, and lines can be characterized

with frequency or time-domain data samples. The efficiency of the optimal method allows

for an accurate simulation of real circuits, containing thousands of multiconductor

nonuniform frequency-depend lines and nonlinear active devices, with virtually no increase

in the simulation time compared to the replacement of interconnects with lumped resistors.
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Abstract--An optimal technique (in terms of computational
efficiency, accuracy, and practical applicability) for the tran-
sient simulation of distributed multiconductor RLGC lines was
developed by applying the indirect numerical Integration
method (the most effident and accurate transient simulation
method) to the device model for a distributed line (the most ef-
ficient and practically applicable model). The technique can be
directly used in a circuit simulator. The computational
complexity is linearly proportional to the number of time-steps.
Nonuniform tines, lines with frequency-dependent parameters,
and real Ilnes, characterized with a few samples of time- or fre-
quency-domain measurements or electromagnetic simulations,
can be accurately and efficiently simulated.

I. INTRODUCTION

The transientsimulationof distn'butedlineshas gained

specialimportancewith thedevelopment of high-speeddigi-

talelectronics.Previouslydeveloped techniquesarequitedi-

verse,but not alwayscomputationallyefficientand applicable

torealcircuitsin which distributedlinesare surrounded by

thousandsof activedevices. In [I]an attemptwas made to

develop a techniquethatwould be optimalincomputational

efficiency,accuracy,and applicabilitytorealproblems. The

resultsobtainedin[I]aresummarized inthispaper.

II. SYSTEM MODEL FOR A DISTRIBUTED LINE

The system-diagram representation of a single line is

shown in Fig. I. Wv/and Wvb represent the forward and
backward voltage propagation functions, respectively; TI, 1"2

and 1-1, 1"2 are the near- and far-end transmission and reflec-

tion coefficients, respectively.
The system-diagram representation of a multiconductor

line is given in Fig. 2. WVm f and Wvmb arc the diagonal

forward and backward modal voltage propagation function
matrices; Tt, T2 and 1"1, rl represent the near- and far-end

transmission and reflection coefficient matrices: and Mvt,

Mvb are the forward and backward modal voltage transfor-

E'/'_Termination _,s .... ,,'-_,Termination_'_ 2

he,workI K' network2

Fig. I. System model for• single line.

0-7803-1254-6/93503.00 © 1993 IEEE

½

o-El2 .-

: '_

N+ I - conductor fine

Fig. 2. Systemmodel for• multicondscmrline.

marion matrices.

The models reproduce the general relationship between the
physical processes of wave propagation, reflection, and
coupling in a distributed system and can represent arbitrary
distributed systems such as uniform and nonuniform trans-

mission lines, waveguides, and plane-wave propagation. For
distributed RLGC lines, the mathematical justification of the
models was obtained [1]. The models can be used for system
analysis of distributed networks. They also allow one to ob-
tain the solution for a distributed system without complex
mathematical derivations.

From Figs. 1 and 2, it can be observed that a distributed

line along with the terminations forms a feedback system.
This explains why a global-parameter characterization (such
as Z-, Y-, H-, or S-parameter characterization) results in com-

plex,non-monotonous functions for the parameters. A direct
characterization in terms of open-loop transfer functions (the
propagation functions) leads to simpler transfer functions and
transient characteristics and should be used for the transient
simulation.

HI. DEVICE MODEL FOR A DISTRIBUTED LINE

Distributed line models can be divided into circuit and

non-circuit models. Non-circuit models cannot be directly

inserted into a circuit simulator, and, consequently, can not be
applied with efficiency for the transient analysis of real cir-
cuits. The system models described in the preceding section
may serve as an example of non-circuit models.

Circuit models can be directly placed into a circuit simula-
tor, and, therefore, are of prime practical interest. They relate
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tion. Theresultingdifferenceequationis called the differ-
ence model of the continuous system [4]. Depending on the

discretization technique, one recognizes the direct and indi-
rect numerical integration methods.

For the direct methods, the differential equation is dis-

cretized using approximations for integrals or derivatives.
Indirect numerical integration methods are based on the ana-

[ydca| relationship between discrete samples of the system
excitation and response (analytical relationship between the
continuous and discrete time domains). The relationship is

obtained using the time-response invariance method. For this
method the excitation is assumed to be piecewise of a certain
form, for instance, staircase, piecewise linear, piecewise

quadratic, cubic, etc. Then, the general solution of the system
differential equation can be found and expressed in terms of

the discrete samples of the excitation and response (by using
the samples as boundary conditions). The resulting differ-
ence model is then used to recursively compute the response

in the time domain [4].
The indirect numerical integration provides the exact sys-

tem response to an excitation which is piccewise of the same
form as the difference model invariance. For instance, the

ramp-invariant difference model provides the exact system
response to a piecewise linear excitation such as a pulse with
linear rise and fall. The indirect numerical integration has

ideal stability and convergence properties, because, in the ab-
sence of an excitation, it always provides the exact system re-

sponse, irrespective of the value of time step and form of in-
variance. It is also more accurate than the direct method.

From the foregoing discussion one can conclude that an

optimal technique (in terms of computational efficiency, ac-
curacy, and practical applicability) for transient analysis of
distributed lines should be based on the device model and the

indirect numerical integration. This combination was first

proposed by A. J. Gruodis and C. S. Chang [5], but using the
direct numerical integration method.

Due to the distributed nature, modules of a transmission
line model can not be exactly described with finite-order or-

dinary differential equations. Consequently, an approximate
ordinary differential equation representation has to be found
before numerical integration can be applied. This can be
achieved by approximating a frequency- or time-domain re-
sponse with the corresponding response of a system described
with ordinary differential equations. The following differ-
ence approximation procedure was developed that allows one
to apply indirect numerical integration to an arbitrary system.
In general, a system may contain an attenuation component
A, a delay component x, and a dynamic pan. The difference
approximation procedure consists of one step: represent the
transfer function in the form

W(j¢o) = A + e , (3)
/=II+ jcoI tOci

or the transient characteristic in the form

I 1h(t) = B- _a i e -t°ci(t-x) u(t-z) . (4)
i=1

Then, the step-invariant difference model is given by

L

Y(tn) = Ax(t n -'¢) + Eyi(tn) , (5a)
i--I

where

Yi (tn) = ai (1 - • -_ciTn )X(tn_ 1 - "¢)+ e -''aTn Yi (tn-I) , (5b)

and the ramp-invariant difference model is

L

y(tn) --- Bx(t n -z) - _._),i(tn) , (6a)
i---I

where

"i (l- r" I
rat.)= J[x(t.-,0- xft._l-x)]

cociJ,

+ e-C°cir" Yi(tn-1) • (6b)

A and B are the final and initial values of the transfer func-

tion, x(t) and )_t) are the excitation and response, Tn=tn-tn.! is
the value of the time-step at n-th iteration, and u(t) is the unit-

step function. Further increase in the order of the time-re-
sponse invariance results in a difference model of higher or-
dei" than the system differential equation without a significant
increase in the difference model accuracy. Eqs. (3)-(6) cor-
re.Cpond to the parallel canonic form of the difference model.

Other forms (including direct and cascade canonic ones) can
be found in [11.

In general, second-order terms representing complex-con-
jugate poles of the transfer function have to be added to the
sum in (3) and the corresponding harmonic terms to the sum
in (4). These terms were omitted here, because the elements
of the device model for a distributed line represent aperiodic
systems, and, therefore, have to be approximated using only
real poles.

The frequency-domain difference approximation procedure
is more general, because it can directly handle lines with arbi-
trary frequency-dependent parameters or lines characterized

with frequency-domain measured data. The time-domain dif-
ference approximation procedure should be employed only if
transient characteristics are available. For a single RLGC
line, the analytical expressions were obtained for the transient
characteristics and limiting values (A and B) for all the
modules of the system and device models [1 ].

The difference approximation procedure is applied to the
characteristic admittances and propagation functions. In the
case of a multiconductor line, all entries of the characteristic

admittance and propagation function matrices need to be ap-
proximated. The resulting time-domain device models have
the same form as the frequency-domain models shown in
Figs. 3 and 4. At each time iteration the instantaneous values
of the conductances and current sources are re.cursively com-
puted from the old values using the corresponding difference
models. If the step-invariant difference model (5) is em-
ployed, the conductances are constant throughout the simula-
tion (because the first-order difference models (5b) do not
contain the current value of the excitation), and only the cur-

1549



.,¢tric
c/ion
wder
volu-
hare
ar in
cond-

4,hich
mdOfl

eUmi-

ndent
reinS.

lielec-

ied by

videly
iielec-

aation

_neral,

wever,
relate

body,
nly on
s of a

ditions

and is

quency

lomain

_s been
mre of

tzation of

:net/¢ and

!

TRANSACTIONS ON _AS AND PROPAGATION, VOL. 43, NO 7, JULY 1995 _ i PROPAGAT/ON. VOL. 43, NO 7, .rULY 1995

ementation of Surface

.ary Conditions for the

Time-Domain Method il i I

_EE and Jose E. Schutt-Aine, Member, IEEE

_mee the SIBC, it is represented by a convolution integral in the

main time domain. Tesche [6] has formulated a time-domain integral iJ.

equation based on this convolution integral and pointed out

that the direct computation of this convolution integral is

impractical due to the large computation time and storage

requirements. On the other hand, Maloney and Smith [7] have

applied the SIBC to the finite-difference time-domain method.

To overcome the computational difficulties associated with the

convolution integral, they use an approximate recursive for-

mula. Their implementation, however, requires the exponential

approximation to be performed prior to the FDTD simulation.

Beggs et al. [8] have eliminated this preprocessing time by

performing the exponential approximation based on the high
conductivity surface impedance approximation. It should be

noted that when the SIBC is applied to the finite-difference

time-domain (FDTD) method, in addition to the reduction of

discretization space, further computational saving is achieved
due to the larger discretization step compared to that for the

nonreduced original problem. A detailed discussion of this

computational saving is given in [7] and [8].

In this paper, the implementation of the SIBC in the FDTD
method is considered for a lossy dielectric half-space and

a thin lossy dielectric medium. For a lossy dielectric half-

space, the normalized impedance function for a lossy medium

is approximated in the frequency domain using a series of
first-order rational functions. Since the normalized impedance

function used in this paper is independent of medium proper-

ties, the rational approximation has to be performed only once.

The results of this approximation are tabulated for rational

functiom of various orders. Then, using the approximate

normalized impedance function and assuming the waves to be

piecewise linear in time, a closed-form expression is derived
to evaluate the time-domain convolution integral recursively.

Thus, the presented formulation is numerically more efficient

than that in [7] because the preprocessing time for the expo-

nential approximation is eliminated and more accurate than
that in [8] since the high conductivity approximation is not

utilized.

Although several methods have been proposed to model a

thin lossless dielectric shell for the FDTD method [9]-[12],

lime work has been performed for a perfect electric conductor-

(PEC-)backed P lossy dielectric shell in spite of its frequent

occurrence in practical problems. A full time-domain imple-
mentation of the SIBC, which accounts for the frequency
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Computation of Excess Capacitances of Various Strip
Discontinuities Using Closed-Form Green's Functions

Kyung S. Oh, Jose E. Schutt-Aine, and Raj Mittra

Abstract--An efficient quasi-static method to compute excess (equivalent)
capacitances of various strip discontinuities in a multilayered dielectric medium is
presented. The excess charge distribution on the surface of a conductor is
obtained by solving an integral equation in conjunction with closed-form Green's
functions. A complete list of expressions of the closed-form Green's functions
for a point charge, a line charge, and a semi-infinite line charge is presented. An
open end, a bend, a step junction and a T junction are considered as numerical
examples.

I. INTRODUCTION

uasi-static analysis is often performed to characterize strip discontinuities when the
dimensions of the discontinuities are much smaller than the wavelength. Under the quasi-

static analysis, the dominant effect of strip discontinuities is fringing fields due to the physical

irregularities of discontinuity geometries. The modeling of these fringing fields in terms of an

excess capacitance is discussed in this paper.

Numerous papers have been published to compute excess capacitances of various microstrip

discontinuities, and a summary of popular methods can be found in [1]. The most successful

approach is one based on the formulation of an integral equation in terms of the excess charge

distribution, which was first proposed by Silvester and Benedek [2] and has been applied to

analyze various microstrip discontinuities [2]-[5]. The Green's function for a layered medium is

employed in this approach. For N dielectric layers, the expression for this Green's function would

consist of an N-1 nested infinite series [6]; hence, in practice, this form of the Green's function

may not be applied to a multilayered medium. Recently, Sarkar et al. [7] solved discontinuity

problems for a multilayered medium using the free-space Green's function, but additional

unknown charges (over unknown charges on the surface of a conductor) had to be placed on the

dielectric interfaces and the top ground plane to model the polarization charge and the free charge.

Although such inclusion of unknowns may be tolerable for 2-D problems, it is computationally too

burdensome for 3-D problems.

In this paper, the closed-form Green's function discussed in [8] is employed to formulate an

integral equation in terms of the excess charge distribution. A complete list of expressions of the

closed-form Green's functions for a point charge, a line charge, and a semi-infinite line charge



with or without a top ground plane is presented in this paper. The presented method requires

neither additional unknowns to model dielectric interfaces and the top ground plane nor evaluations

of any infinite series except for cases where the top ground plane is present. When the top ground

plane is present, using the closed-form Green's function is still numerically advantageous since the

nested infinite series in the expression of the usual Green's function becomes a simple infinite

series without nesting.

II. CLOSED-FORM GREEN'S FUNCTIONS

Closed-form expressions of the electrostatic Green's functions for a point charge, a line

charge, and a semi-infinite line charge are derived in this section based on the approach used in [8].

Consider N dielectric layers which are backed by a ground plane as depicted in Fig. 1. The Nth

layer is either a half-space or terminated by an optional top ground plane. All dielectric layers and

ground planes are assumed to be planar and infinite in the xz-plane. The electrostatic Green's

function in the spectral domain is described by the following closed-form formula [8]:

_(T,y[ro) = 1 (K?(T,m,n)e?,(y+yo_2dn) + Kf(_t,m,n)e?,(y_yo+2(dm_,_dn))
2Em_"

+ K_ (_,m,n)e_'(-Y+ Yo) Y >-Yo Cla)+

G(?', ylro) = 21i( K? (r,m,n)e _'(y+y°-2am),,.+ K_ (_,,m,n)e _(y-yo)

+ Kf (_t, m,n )e?_(-Y+ yo +2( dn-l -dm )) K4()',m,n) e_'(-y-y°+2d"-l)) Y< Yo (lb)+

where ¢_ is the spectral-domain Green's function, and r and ro are the observation and source

points located in the nth and mth layers, respectively. The superscripts + and - are used to denote

the cases for y > Yo and y < Yo. The expressions for the four coefficient functions K/t: can be

found in [8]. A closed-form expression of the Green's function in the space domain is obtained by

approximating these four coefficient functions K/:t using exponential functions. It is important to

mention that although K + is dependent on m and n, it is not a function of y and Yo; hence, the

approximation can be performed without any prior knowledge of the junction geometry. The

following two subsections detail the derivation of the closed-form Green's functions due to a point

charge, a line charge, and a semi-infinite line charge with or without the top ground plane.

A. Closed-Form Green's Functions for Geometries Without the Top Ground Plane



When there is no top ground plane, the four coefficient functionsK + in (la) or (lb) are

nonoscillatory and smooth functions of 7; hence, each coefficient function can be sufficiently

approximated with real-valued exponential functions as follows [8]:

+
Nm,n,i

• ±,)

K_(m,n,7)= _ C +'; e a".",A' i=1,2,3,4 (2)- rn,n,i-
j=l

where N+n,i denotes the number of exponential functions used in the approximation of K +,

which typically ranges from 5 to 10. The exponential functions used in the spectral-domain

approximation can be physically interpreted as weighted images in the space domain [8].

Compared to the exact Green's function in the space domain, which consists of an infinite number

of images, the expression for the closed-form Green's function consists of only a finite number of

weighted images.

Once the exponential approximation is performed in the spectral domain, the closed-form

Green's functions for 2-D and 3-D can be obtained in the space domain by using the inverse

Fourier transformation formulas (14a) and (14b) in [8], and the resulting expressions are given by

4

G2D(PlPo)= -11 fi 2D'++'(pIpo)
2ZCEmi=1

(3a)

4

G3D(rlro)= I i_ 14_ m fi3D'+ (rl ro)
(3b)

For i=1 and y > Yo, the expressions of f/2D,+ and ft.3D'+ are given by

+
gm,n.I

fl2D'+(PIPo ) E +'j (_ +,j )2) (4a)= C_n,n,1 .ln (X-Xo) 2 +(Y+Yo -2dn +am,n,l

j=l

+

Nm,n,l Cm+,J
,n,1

+,j )2+ (Y + Yo - 2dn + am,n,l + (Z- Zo) 2

(4b)

Similar expressions can be obtained for f/2D,+ and f/3D,+ for other values of i.

To derive the Green's function for a semi-infinite uniform line charge, the auxiliary Green's

function for a line charge with polarity reversal is employed [2]. Consider a uniform line charge,



which starts from z = _ and is infinitely extended in the positive z-direction; then the Green's

function for a semi-infinite line charge G semi can be expressed as

Gsemi(rlro,_) = 2[G2D(plpo)+ GP(rlro,_)] (5)

where G semi is the Green's function for a line charge with an abrupt polarity reversed from minus

to plus at z = 4. The expression for G p is obtained by integrating the potential due to a point

charge [2]:

4 p,+
GP (rlro, 4) = - _ 63 O (r[r ° ) + _63 O (rlr ° ) = _ E fi -(rlro, 4)

--o, a 4_Em i=1

(6)

Again, for i= 1 and y > Yo, fi p'+- is given by

+

Nm.n,l

f P'+(rlro' ) = E
j=l

__<= >= i/j+.j -Xo) 2+(y+yo-2dn+am,n,I +(Z-_) 2 +(z-_) (7)
Cm,n," lnl [ +,j -

(x Xo)2 +(y+ yo 2dn +arn,n,l +(z 4) 2 (z

B. Closed-Form Green's Functions for Geometries with the Top Ground Plane

When the top ground plane is present, all of the four coefficient functions K/:t are still

nonoscillatory but contain a pole at )' = 0; as a consequence, K + can no longer be accurately

approximated with exponential functions [8]. To overcome this difficulty, let us rewrite G in the

following manner:

d( r, ylro) = Rm,. h (r, ylro) + (r, ylro) (8)

where (_h is the spectral-domain Green's function for a homogeneous medium, i.e., all dielectric

layers are replaced by the source layer. Rm, n is a const.ant which is determined such that (_h

contains a pole at 7' = 0 and (_' is a well-behaved function without any poles. Rm, n can be

obtained either numerically or analytically by taking limits of (_ and (_h as 7' _ 0. Now the

technique used in the previous section can be applied to obtain the closed-form expression for G'

in the space domain, and the space-domain expressions of (_ are obtained once the corresponding

expressions of (_h are determined.

Expressions of t_ h in the space domain can be easily obtained using the image theory approach

and are given by
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G2D, h(p]po) -
1 "_ ln(_/(X-Xo)2+(._._.yy-y..yo-2kh)2 I2_ _-__..._ (_(x Xo)2 +(y+ yo 2kh)"---_

(9a)

_/(x - Xo) 2 +

- 2kh) 2 + (z - Zo)2

I
(Y + Yo - 2kh )2 + ( z - Zo )2

(9b)

GP, h(rlro,_) =.._L _ ln(_/(x

4zr k=--oo _j(x

• _/(X-Xo) 2 +(y+

_/(X - Xo) 2 + (y +

- x°)2 + (Y - YO - 2kh)2 + (z - _)2 + (z - _)

Xo)2+(Y Yo 2kh)2+(z-_)2-(z _)

Yo - 2kh) 2 + (z - 4) 2 - (z - 4) I

Yo 2kh) 2 +(z 4) 2 +(z 4) J (9c)

Unfortunately, all expressions are written in terms of infinite series. Although G 2D'h can be

alternatively expressed using a closed-form formula [8], such closed-form formulas cannot be been

found for G 3D'h and G p'h . Since the closed-form formula for G 2D'h requires numerical

integration when the moment matrix is computed, we will simply use (10a) to evaluate G 2D'h .

Therefore, an infinite-series expression, in general, cannot be avoided for G 2D, G 3D, and G p

when the top ground plane is present. However, the expressions for G 2D, G 3D, and G p given in

this paper are still numerically more efficient than the ones obtained from the conventional image

method since a nested infinite series of the conventional method is reduced to a simple infinite

series without nesting as shown in the above equations, t For this reason we shall still refer to

G 2D, G 3D, and G p given by (9), (10a), (10b), and (10c) as closed-form Green's functions.

IV. FORMULATION OF AN INTEGRAL EQUATION

In this section, an integral equation is formulated in terms of the excess charge distribution

using the closed-form Green's functions derived in the previous section. Figure 2 shows the planar

view of the general geometry of a discontinuity, which consists of traces and a junction region.

This general geometry represents most of the common strip discontinuities, e.g., an open-end, a

nonothogonal bend, and various junctions. Although the present approach can handle conductors

with f'mite thicknesses, the conductor thicknesses are assumed to be inf'mitely thin in this paper.

The discontinuity structure is embedded in a layered dielectric medium, which is shown in Fig. 1.

Alternatively, infinite series can be avoided by modeling the top ground plane as an additional conductor and
using the Green's functions in the previous section.



The integral equation relating the electrostatic potential 0 and the charge density q on the

surface of a conductor is given by

¢(r) = S G3D(rlr' )q(r' )dr' =(G3D,q) (10)
1"2

where/'2 are the surfaces of a conductor: traces and a junction region. To simplify the notation the

integration is symbolically written as (.,-). Now let us rewrite the charge density q in the following

manner:

Then, (10) becomes

qj (r),

q(r)=[q_.(r),

if r is on the junction region

if r is on the ith trace
(11)

N I

_(r)= (G3D,q) = (G3D,qj )+ E (G3D'q_') (12)
i=l

Decomposing the charge densities q_- into the uniform charge density q_nif,i and the excess charge

exces$.i
density qT for each trace:

q_.(r) = q_.nif 'i (r) + excess,i, ,qT tr) (13)

.unif,i is obtained by solving a 2-D problem, in which it isHere, the uniform charge density ,.ST

assumed that only the ith trace is present in the medium and that the ith trace is infinitely long in

both directions. A detailed discussion for solving 2-D problems is given in [8]. The uniform

charge density q_nif,i exists only on the ith trace, which is a semi-infinite line; hence, G semi

should be used to compute the potential due to q_nif,i. Using (13), (12) can be written as follows:

N t

N, \ T ] \ //Gsemi'qunif'i\=/G3D'qj\+_",.-.3D excess.i\_(r) - E 2.,\ I-" ,qr /
i=1 i=1

(14)

The integral equation (14) can now be solved by using the method of moments. The collocation

method is used in this paper. The closed-form formula for the integration involving G 3D is given

discussed in [8], whereas the integration involving G semi can be analytically integrated using the

following formula:



r'26221[ I / /f ln/_/a + + + a dl = 21DI tan -I all - tan-I . a12

J L4a2+b2+12_a ]bl_a2+b2+ll 2 Ibl_a2+b2+l

+2alnl12_+_a2+b2+122]+ ln(_a2+b2+122+a) ln(_a2+b2+ll2+_]it/l+_ ) 12 t_2+b2+122_a) -ll t_a2+b2+ll 2-
(15)

Now once (15) is solved, the excess (equivalent) capacitance c e can be obtained by

ce = Qj + Q_xcess,i (16)

i=1

where Qj is the total charge on the junction region, and _excess,i_T is the total excess charge on the

ith trace. Throughout the formulation, we have assumed that the junction region exists between

traces. The formulation for cases without the junction region, such as an open end and step

junctions, can be easily obtained simply by removing terms corresponding to qj.

IV. NUMERICAL EXAMPLES

A computer program is written based on the technique discussed in the previous sections. The

program assumes that the shape of the junction region, (see Fig. 2), if it exists, is polygonal, and it

can handle an arbitrary number of dielectric layers as well as traces.

Excess capacitances for four common strip discontinuities, an open end, a step junction, a

bend, and a T junction, are computed using the program. The geometries of discontinuities with

their corresponding equivalent circuits are shown in Fig. 3. The following parameters are used: 1)

an open end: w = 0.5 mm, 2) a step junction: w1 = 0.1 mm and w2 = 0.2 nun, 3) a right-angle

bend: w t = w 2 =0.15 mm, and 4) a T junction: w t =w 2 = w 3 =0.15 mm. Three different types

of media are considered for each discontinuity with the following parameters (see Fig. 5): 1) an

open end: e1 = 4.2, t_2 = 2.5, Yl = 1.0 mm, Y2 = 1.5 mm, and Y3 = 2.0 ram, 2) a step junction:

el=6.0 , e2=4.2 , yl=0.1mm, Y2=0.2mm, and Y3=0.3mm, 3) a bend: e1=2.5,

e2=4.2 , yl=0.15mm, Y2=0.3mm, and Y3=0.5mm, 4)aT junction: e1=2.5 , e2=4.2 ,

Yl =0.15 mm, Y2 =0.3 mm, and Y3 =0.5 ram. All discontinuities are assumed to be embedded

at y = Yl. To place 3-D unknowns for the excess charge distribution, the length of each trace is

truncated at l = 8w. The total numbers of unknowns per each trace were 50 for a 2-D problem and

160 for a 3-D problem, whereas 100 unknowns were used for the junction region. The maximum

number of exponentials used to approximate each coefficient function K/:t was 5.



Thecomputedresultsareshownin TableI with thecomparisondatafor amicrostripcase(Fig.

4(a)).A goodagreementwasfoundoverallasshownin thetable.It is interestingto notethatfor
somecasesthe valueof an excesscapacitanceturns out to be negative.Although a physical

capacitancemust be positive, an excess(equivalent)capacitanceis hypotheticaland can be

negative.

V. CONCLUSIONS AND FUTURE WORK

An efficient method to compute excess capacitances of strip discontinuities was discussed in

this paper. Complete expressions of closed-form Green's functions for a point charge, a line

charge, and a semi-infinite line charge have been derived. Unlike other approaches, only one

integral equation is employed in this paper to handle various strip discontinuities instead of

formulating an integral equation for each discontinuity type. The numerical results for a microstrip

case agreed well with other published results.

REFERENCES

[1] K.C. Gupta, R. Garg, and I. J. Bahl, Microstrip Lines and Slotlines. Norwood, MA:
Artech House, 1979.

[2] P. Silvester and P. B. Benedek, "Equivalent capacitances of microstrip open circuits," IEEE

Trans. Microwave Theory Tech., vol. 20, pp. 511-516, Aug. 1972.

[3] P.B. Benedek and P. Silvester, "Equivalent capacitances for microstrip gaps and steps,"

IEEE Trans. Microwave Theory Tech., vol. 20, pp. 729-733, Nov. 1972.

[41 P. Silvester and P. B. Benedek, "Microstrip discontinuity capacitances for right-angle bends,

T junctions, and crossings," IEEE Trans. Microwave Theory Tech., vol. 21, pp. 341-346,
May 1973.

[5] P. Silvester and P. B. Benedek, "Correction to 'Microstrip discontinuity capacitances for

right-angle bends, T junctions, and crossings'," IEEE Trans. Microwave Theory Tech.
(letter), vol. 23, p. 456, May. 1975.

[6] C. Wei, R. F. Harrington, J. R. Mautz, and T. K. Sarkar, "Multiconductor transmission

lines in multilayered dielectric media," IEEE Trans. Microwave Theory Tech., vol. 32, pp.
439-450, April 1984.

[71 T. K. Sarkar, Z. A. Maricevic, J. B. Zhang, and A. R. Djordjevic, "Evaluation of excess

inductance and capacitance of microstrip junctions," IEEE Trans. Microwave Theory

Tech., vol. 42, pp. 1095-1097, June 1994.

[81 K. S. Oh, D. B. Kuznetsov, and J. E. Schutt-Aine, "Capacitance computations in a

multilayered dielectric medium using closed-form spatial Green's functions," IEEE Trans.

Microwave Theory Tech., vol. 42, pp. 1443-1453, Aug. 1994.



9

OptionalTopGroundPlane

ENd, _1o

y=dNd

y=dNd-1

Bottom Ground Plane

y=d2

Y

y=dl l
y=0

x

v
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10

l

(a) An open end

ce

I1 ,,,.._1_ 12

Wl _ w2

ll

(b) A step junction

v- I
4

0
ce

12

Ii
,.._1
v I

Ii
,..._1
v I

(c) A bend

J_,dl

c e

12

tl t3
•J le

ll

v I

(3

12

0
c e

(d) A T junction
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TableI. Thenumericalresults(Unitsarein femtofarad).

Medium1

Computation Others

Medium2

Computation

Medium3

Computation

17.33

1.120

6.210

1.385

17.0 [1]

1.05 [ 1], 0.74 [71

6.75 [1], 5.8 [7]

1.9 [7]

23.52

1.352

7.006

-4.917

19.62

0.609

9.184

-0.818
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A b s t r a c t --This paper presents a method for the circuit simulation of uniform

multiconductor Iossy frequency-dependent lines characterized by sampled

frequency-domain responses. The implementation includes ac, dc and transient

analyses. The method combines element characteristics which do not require

introduction of current variables, open.loop characterization which results in the

simplest transfer functions, novel frequency-domain matrix rational

approximation method, novel matrix delay separation technique, and matrix

indirect numerical integration formulas. The method is reliable, accurate and as

efficient as the simple replacement of interconnects by lumped resistors.

I. INTRODUCTION

HE PROBLEM of the transmission line simulation gained special importance with the
development of high-speed digital electronics. As transient times become faster, the

transmission line behavior of electronic interconnects starts to significantly affect transient

waveforms, and accurate modeling of on-board and even on-chip interconnects becomes an

essential part of the design process. The complexity of contemporary digital circuits calls for
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accurate transmission line models efficient enough to perform the simultaneous circuit simulation

of thousands of lossy coupled frequency-dependent lines surrounded by thousands of nonlinear

active devices. Lines to be simulated may be characterized by measured or electromagneticly

simulated samples of their responses.

A substantial amount of study has been devoted to the transient simulation of transmission

lines in recent years [1]-[19]. This paper presents a method for circuit simulation of uniform

multiconductor lossy frequency-dependent transmission lines characterized by sampled frequency-

domain responses. The method is based on the approach described in [20]. The method supports

variable time stepping and has linear computational complexity. The method has been adopted in

several industrial and commercial circuit simulators, and, in numerous real-life simulation

exercises, proved to be reliable, accurate and as efficient as the simple replacement of interconnects

with lumped resistors.

The method employs element characteristics which do not require the introduction of

current variables. As a result, the method increases neither the number of nodes nor the number of

circuit variables, and the lines are incorporated into the circuit simulation without any increase in

the circuit solution time. Element characteristics for the ac and dc analyses are based on the Y

parameters.

For the transient analysis, the method uses open-loop transfer function characterization

(direct characterization in terms of the propagation functions and characteristic admittances), which

opens the feedback loop formed by the reflections from the terminations, and results in the simplest

characteristic responses. It is shown that the open-loop characterization is equivalent to the

generalized method characteristic.

The transient analysis is carried out by matrix indirect numerical integration. It has linear

computational complexity, and ideal convergence, accuracy and stability properties.

To apply numerical integration to the propagation functions and characteristic admittances

given as a set of frequency-domain samples, the method employs difference approximations. It

fits the samples with a rational polynomial function and expresses the numerical integration
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formulasin terms of the approximation parameters. Because of the simplicity and aperiodicity of

the open-loop transfer functions, excellent approximation accuracy is attained with low-order real-

pole approximation and a few original samples.

The approximation is performed by novel matrix direct constrained method. The method

fits arbitrary number of arbitrary-spaced complex samples of a matrix transfer function with the

matrix rational polynomial functions with poles constrained to the left half of the complex plane to

insure stability. The method employs no iterative or relaxation techniques, only direct linear

solutions and a polynomial factoring, and is computationally efficient and free from convergence

problems.

Before the approximation, the delay is separated from the matrix propagation functions by a

novel matrix delay separation technique. The technique eliminates the problems associated with the

delay separation based on the diagonalization with the frequency-dependent modal transformation

matrices, which are nonminimum-phase functions of frequency with unstable time-domain

responses.

Throughout the paper, capital boldface, small boldface and normal italic symbols will be

used to denote matrices, vectors and scalars, respectively. Since only multiconductor lines will be

considered, the modifier "matrix" for the transfer functions will be omitted in the future for brevity.

II. FREQUENCY-DOMAIN LINE MODEL FOR TRANSIENT

ANALYSIS

The frequency-domain element characteristic (for the transient analysis) which does not require the

introduction of current variables and is suitable for the line modeling is given by

il (to) = Yt (to) vl (to) - Jl (to) ( 1)
i 2((0) Y2 (tO) v 2(to) - J2 (to)"

The conventions for the terminal voltages and currents are shown in Fig. 1. The expressions

relating the matrix admittances Yj and Y: and vector current sources j_ and J2 to the

transmission line characteristics are derived directly from the continuity conditions for the voltages



andcurrentsatthe line terminals.To separateforwardandbackwardwavesandopenthefeedback

loop, thecurrentsourceJl mustdependonly on thebackwardwave,and J2only on theforward

wave. This condition uniquely defines YI, Y2 and Jl, J2 as follows:

Y1 (t9) = Y_ (co) = Y¢ (co) (2)

and

Jl (_) = 2ibl (CO)j2 (O,))= 2if_ (O.)), (3)

where Yc stands for the characteristic admittance, and the forward and backward current waves,

ir_, if2 and ibm, ibz are related as:

ib, (03) = Wlt,(C0) [ib2(03) = i:(t0)+ ir2(_) ]it:(co) W,f(co)[it,(co) = i,(co)+ ib,(o3) ]. (4)

The propagation functions for the forward and backward current waves are equal,

Wit = Wn, = Wt. The open-loop device model (1)-(4) is equivalent to the generalized method of

characteristics [14], [1 1], [12].

The propagation function and characteristic admittance can be computed from the insertion

loss data [14], scattering parameters [19], or distributed RLGC parameters:

Wl (0,)) = e-K, _t°_l

Y_(co) = K1(o3) Z-J(o_),

where I is the length of the line,

I

Kt (o)) = (Y(_o) Z(o)))i

is the propagation constant for current waves,

Y(co) = G(co) + jco C(co),

Z(co) = R(co) + jco L(co)

are the admittance and impedance per unit length, and R, L, G

inductance, conductance and capacitance per unit length.

and C are the resistance,
!

Boldface (.)i and e_') denote matrix
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square root and matrix exponential, respectively.

III. DIFFERENCE APPROXIMATION

To perform the transient analysis, indirect numerical integration is applied to the propagation

functions and characteristic admittances in the frequency-domain line model (1)-(4) by using the

difference approximation method,

For the difference approximation in the parallel canonic form, samples of the frequency-

domain transfer function are approximated with the rational polynomial function

M 1
IT.I(jco) = I2I + y. (5)

,7"o--l + jo3 / c%. Am'

or samples of the time-domain unit-step response are approximated with the exponential series

M

h(t) = I7to - Z e-°""A,,,,
m=l

where 17-1oand I7t. denote the initial and final values of the approximating transfer function

Once the approximation has been performed, indirect numerical integration formulas

(discrete-time difference equations) are readily given in terms of the approximation parameters.

For the step invariance the formulas are

M

y(t.)=H.x(t.)+Zzm(t.)
m=l

Zm(t.)= (1-e -o*.r" )A mx(t._,)+ e -_*"r" Zm(t._,),

(6)

where x, y and z,. stand for the excitation, response and state variables, respectively, and

7". = t. - t._ L is the time step at the nth transient iteration.

For the ramp invariance

y(t.) - I_Iox(t.) - ___1z,. (t.) _,

z.,(t.)=D.,(T.)(x(t.)-x(t. ,))+e- ' .r. Zm (t._j) '

(7)



where

l --e - _'" T.

D,,, (T_) = A m.
0_,. r,, T,,

An alternative form of the ramp-invariant indirect numerical integration formula has the coefficients

of the present-time sample of the excitation lumped together

This form is

y(t.)= I_Io - D_(T_) X(t.)--_Zm(t.)
m=]

[z,,, (t,,)--(Dm(T._,)e -_''r" - Dm(T.))x(t,_,)+ e -°'''r" z,,, (,._,).

(8)

especially suitable for discretization of characteristic admittance, because, for

where Tim

matrix

Before the approximation, the delay is separated from the matrix propagation function

using the matrix delay separation technique. It represents the matrix propagation function in the

following form:

W,(03) = "v_/,(_) 9¢I, e --''''T'' IQI_",

and 1VII are the constant eigenvalue and eigenvector matrices of the propagation delay

!

T, = (C(oo) L(_))i l = K, (oo) l

Difference approximation is applied to the delayless propagation function

_Vl(fD)= Wt(_ ) e -/°:r,

The delays in the diagonal modal-delay matrix Tim are modeled using a low-order spline of the

simulated time points.

The difference approximation is applied to the delayless propagation function and

characteristic admittance. For the characteristic admittances in (1), the excitations are the terminal

voltages and the responses are the terminal currents. For the propagation functions in (4), the

excitations and responses are the current waves.

physical meaning.

admittances, the present- and past-time terms of the numerical integration formulas have different



Since the open-loop functions are aperiodic, they have to be approximated with only real

poles, -c0c, _ . In addition, the poles have to be negative to assure stability.

To represent the original functions accurately with the minimum number of samples, the

variation of the original function from sample to sample should be about the same. The following

empirical formula for the sampling frequencies was found to provide good results

o3_ = 03K(1-cosnk_, k =0, 1,.. K.
2K) '

The end of the approximation interval, 6%:, should be chosen so that the original function would

closely approach its final value. This assures that the resulting indirect numerical integration

formulas will be accurate in the full frequency and time ranges from zero to infinity.

IV. MATRIX COMPLEX RATIONAL APPROXIMATION

METHOD FOR FREQUENCY-DOMAIN DIFFERENCE

APPROXIMATION

The method fits samples of an N x N complex matrix transfer function H(O3) with the rational

polynomial function (5) at the set of arbitrary spaced frequencies {0, o3f, o3, ..... cox }. The method

proceeds in three steps.

First, the real part of the sum of the elements of the original matrix function,

N N

i:l j=]

is fit with the real part of the complex rational polynomial function, which is a real rational

polynomial function of squared frequency

Re(ftz(jo3))= Co +c, CO2 +c2(O32) 2 +...+cM (O32) M
1 + 13,o32 + 132(o32)2 +... + 13u (o32)u" (9)

The following linear system of equations results from matching the real part of the original function

with (9) at the set of frequencies and premultiplying both sides of each equation with the

denominator



Ii 0 ... 0

co_ ... o_M

2 2M

(OK "'" (OK

0

-(o_ Re(H_:((O,))

: Re(Hr((ox))--(O K

Co

... 0 t "

... _(O_u Re(HI((O'))I cu• -_-

... _(o M
__3g

Re(H_(O)) ]

Re(Hz((OK ))J

(10)

For interpolation, K = 2M and solving (10) produces a rational polynomial function which

coincides with the real part of the original function at all of the sampling points. For a set of

samples larger than 2M+I, the least square solution of the system (10) can be obtained.

However, it minimizes the approximation error premultiplied with the denominator, which can lead

to inaccurate approximation. Better results are achieved with the method of averages [21], which

partitions the larger number of equations into 2M + 1 subsets in order of the increasing of co. The

equations within each subset are added up, which makes the system consistent. The method is

effective in averaging out the noise in measured data.

After the real part has been approximated, the denominator of (9) is factored yielding the

2
squared poles, -coo, .. Consequently, no unstable right-half-plane poles can be produced•

However, there still can be spurious complex conjugate and purely imaginary poles, which are

removed• The remaining real negative poles are used to formulate the equations for the partial

expansion coefficients, A m, of (5). As a result, the order M of (5) is less or equal to that of (9).

Matching the real and imaginary parts of each element of the original matrix transfer

function H(co) with the corresponding parts of elements of (5) at the set of frequencies

{0, to_, 602..... _Jc } leads to the following linear systems of equations



A __

-I 1 ... 1
1 1

1
1 + _ / co_, 1 + co_ / t.o_M

1 I

1 1+
0 -(.Oj / t.O_j -t.Oj / _

"_ 2 ''"

1 + co? /coc_

0

1 + col Ico_

-co K/COcj -to K/co_

I + co_.lo)z_ I + o.)_.Io)_

In.l,,

[A,L
x-[A,],j =b=

[H(0)] o

Re([H(co,)]o)

Re([H(cor )],j)

(I1)

For interpolation M = 2K, and both real and imaginary parts of the original transfer function are

matched exactly at all of the K frequency points and dc. For an arbitrary larger number of points,

the least square solution of 11) is obtained from

ArAx = Arb.

The total computational complexity of the approximation method is that of N: + 1 real

linear solutions and one polynomial factoring. The orders of the polynomial and linear systems

depend only on the order of the approximation and not on the number of the original function

samples. Since no iterative or relaxation techniques are involved, the method is free from

convergence problems•

Fig. 2 shows an example of the fourth-order approximation of an open-loop transmission-

line transfer function• As can be observed, although only nine samples of the original function

were used, the approximation exhibits an excellent match in the full frequency range. In general,

due to their simplicity, the open-loop functions can be accurately fit with the 3rd-9th-order

approximation.

V. COMPANION MODEL

By applying the difference approximation to the propagation function and characteristic admittance,

the frequency-domain elemen! characteristic (1) is transformed into the following discrete-time

element characteristic, or companion model
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i, (t.) = '_', (t.) v,(to)- j,(t.)i:(t.) = '_2(t.) v_(t,)- j,(t,).
(12)

The circuit-diagram interpretation of the companion model is shown in Fig. 3.

The admittances _'z and _"2 represent present-time coefficients in the indirect numerical

integration formulas for the admittances Y, and Y2" The current sources j, and ]z combine the

currents Jr, and Jr, corresponding to the remaining parts of the numerical integration formulas for

the admittances, and j, and Jz which are given by the discretized Eqs. (3) and (4)

(13)

Eqs. (3) and (4) do not contribute to the admittance part of the companion model because the

propagation functions contain a delay.

The Modified Nodal Approach (MNA) stamp corresponding to the companion model (12)

is:

KCL at

node:

1.1

I.N

2.1

2.N

2'

VL, ... Vt_, V I.

N

-2[_,],,
l=l

,%,

]zl
.... "-X' -- _ _'-_ "'_

-2[';', l, .... YT_,],,_i2Y_[_',],,
t=l izl I I=l 3=1

V2I •.. V2. N

I
I
I

I
f

-2[_'21,_.... 2['_,],,,

7 2 •

-T_.[_2],,
ltl

N

-Y.[_',]_,
)m|

V2,

[J,],

-- -y[j,],
m ,

[],],

IJ_]N

-_[_],
r=l

(14)

In the circuit simulator during the transient analysis, the lines are represented by the tables of

numbers (14) which are recursively updated at each time iteration using numerical integration. The

left-hand side of the stamp (14) has to be updated only when the value of the time step changes. If
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the step-invariant indirect numerical integration formulas (6) are used, the left-hand side of the

stamp becomes independent of the time step, and only the right-hand side vector has to be updated.

Since the terminal currents are not introduced as variables, the values of i I and i z in (4) are

computed from (12).

VI. LINE MODEL FOR AC AND DC ANALYSES

For ac and dc analyses, the complexity of the transfer functions is not important, and the element

characteristic which does not require the introduction of current variables and is suitable for the

ac/dc modeling of transmission lines is the Y-parameter characteristic

i, {¢o) = Y. (o_) v, (o_) + Y12 (o_) v: (o_)i_(_) Y_,(0J) vl(o_)+Y22(03) v:(03). (15)

The Y-parameters are related to the open-loop functions as follows

Y,, (o3) = Y22(eo) = Y_(¢o) + 2[I- W_ ((o)]-1W_(co)Y¢(o3),

Y12(CO) Y,I(CO) -2[I _ -1= . = -Wl(0_)] Wl(°3)Yc(w), (16)

where I is the identity matrix. The expressions were derived by eliminating jj and J2 from Eqs.

(1)-(4), and transforming them to the form of (15).

The dc model is merely the ac model at zero frequency. For the limiting case of lines with

zero distributed conductance, G = 0, the dc values of the Y-parameters are

Y,, (0) = Y22 (0) = -Y,_ (0) = -Y_I (0) = 1 R_l.
1

The MNA stamp corresponding to (1 5) is
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KCL at
V_f

node:

1.1 I
I

VIA :

Vz._:

Vr I
m

V,.2

V,.N

V 2

0

= 0

0

0

0

(16)

VII. INITIAL CONDITIONS FOR TRANSIENT ANALYSIS

The dc model is used to perform the operating-point (op) analysis before the transient simulation.

The op solution is then used as initial conditions for the transient analysis. The initial conditions

for the indirect numerical integration are the dc values of the state variables, which are related to the

dc value of the excitation, x 0 , as follows: z,,(to) = a,,x o for the step-invariant case (6), z_(t o) = 0

for the ramp-invariant case (7), and z,,(to)=-d,,(T t)x o for the ramp-invariant case (8)• The dc

values of i n and ib2, which serve as excitations for the propagation functions in (4), have to be

expressed in terms of the terminal voltages obtained from the op analysis. Resolving Eqs. (1)-(4)

leads to

I 2 -I

ir,(O)=[I- W,(O)] [Y,(O)v,(O)-W,(O)Y=(O)vz(O)]

2 -I

[ib,(O) [I-W,(O)] [Yc(O)v,(O)-Wt(O)Y,(O)v,(O)].

For the limiting case of G = O, the expressions become

_,,(o)= -k,(o) = _ R-'[v, (o)- v2(O)].



VIII. SIMULATION ALGORITHM

For an MNA-based simulator, the line simulation algorithm is as follows.

13

1. Before the transient analysis:

a) Perform op analysis of the circuit to find the initial conditions for the transient analysis.

Use the ac/dc model ( 15)-(16).

b) For each line in the circuit, perform the difference approximation of each element of the

propagation function and characteristic admittance matrices.

2. At each time iteration:

Recursively update the line stamps using the indirect numerical integration formulas

obtained at step 1(b) and companion model ( 12)-(14).

Since the method introduces neither additional nodes nor current variables, the line

modeling does not increase at all the circuit solution time. The only additional time is required to

perform a low-order interpolation once in the beginning of the simulation, and for a low-order

numerical integration. As shown in the next section, this time is negligibly small compared to the

circuit solution time.

IX. NUMERICAL RESULTS

The method has been adopted in several industrial and commercial circuit simulators, and, in

numerous real-life simulation exercises, proved to be reliable, accurate and efficient. Table II

presents relative runtime data for circuits of various types and sizes. As can be observed, even for

the worst case of a small circuit consisting of lines only, the model is virtually as efficient as the

simple replacement of interconnects with lumped resistors. The resistive model was chosen for the

comparison because it represents the limiting case in the simplicity and computational efficiency of

the interconnect modeling.

Fig. 4 verifies the method's accuracy with Spice3e2 lossy multiconductor line model [8].

A simple network was chosen as an example to reduce the influence of factors other than the line
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model on the simulation accuracy. A variable, third- to fifth-order frequency-domain difference

approximation was applied. As can be observed, the compared waveforms are indistinguishable.

The runtime for the presented method was three orders of magnitude shorter than that for the Spice

model, which is, in turn, an order of magnitude faster than segmentation models.

The presented line model has been implemented in a commercial CAD product DFSignoise

from Cadence. The following examples show results for real circuits analyzed with tlsim, the

simulator deployed by Cadence's DFSignoise. The examples compare the suggested line model

with segmentation models. The suggested model included frequency-dependent loss, whereas the

segmentation models included no frequency dependence.

The first example is a long cable driven by an ECL buffer at a high, 400 MHz, speed. The

nonlinear characteristics of the driver and receiver were described in the I/O Buffer Information

Standard (IBIS) data format [22]. Fig. 5 shows the circuit schematic and the IBIS data. and

compares the simulation results obtained with the lumped RLGC and pseudo-lumped (distributed-

LC/lumped-RG) segmentation models and the suggested line model. The number of segments for

the segmentation models was over 400. The automatic algorithms used to determine the number of

segments took into account the rise and fall times and the expected attenuation.

The waveform simulated with the suggested line model shows considerable attenuation due

to the frequency-dependent dielectric loss and conductor loss with the skin effect. As can be

observed, the segmentation models without the frequency-dependent loss consistently underpredict

the attenuation and resulting loss of the noise margin, accurate prediction of which is important at

these speeds. The lumped segmentation model also shows spurious peaks which are artifacts of

that method.

Fig. 6 shows a similar comparison between the pseudo-lumped segmentation model and

suggested line model for a circuit driven by IBIS CMOS buffers at 200 MHz. This network is

complicated and contains 45 two-conductor, 8 three-conductor and 5 four-conductor lines. The

longest transmission line in this case was a two-conductor line of 0.5 m. The longest

multiconductor line was a four-conductor line of 0.26 m. The largest delay was 7.8 ns. In this
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case,thetwo modelsproducedcomparableresults,sincetherise time of the driver was0.9 nsas

opposedto the0.3ns of theECL driver. Thefigure alsoshowsthecrosstalkwaveform V_. The

crosstalk waveforms for the suggested and segmentation models were very close.

X. CONCLUSIONS

This paper presented a method for circuit simulation of uniform multiconductor lossy frequency-

dependent lines characterized by sampled frequency-domain responses. The method uses element

characteristics which do not require the introduction of current variables, simple open-loop

transmission line characterization, matrix indirect numerical integration formulas, hove] direct

matrix rational approximation method, and novel matrix delay separation technique. The complete

step-by-step implementation of the method was presented, including ac, dc and transient analyses.

extraction of initial conditions from the op analysis, and MNA stamps.

The method is compatible with recursive time-domain solvers employed by circuit

simulators and supports variable time-stepping. The method has been adopted in several industrial

and commercial circuit simulators, and, in numerous real-life simulation exercises, proved to be

reliable and accurate. It was shown on an extensive set of runtime data that the method is as

efficient as simple replacement of interconnects with lumped resistors.
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Fig. 5.

Fig. 6.

FIGURE CAPTIONS

Conventions for the voltages and currents at the line terminals.

An example of the 4th-order complex rational approximation. The original function is

shown by the thin continuous curves and the approximating function by the thick dashed

curves.

Companion model for a transmission line.

(a) the network configuration and (b) comparison of the transient waveforms generated

using the line model installed in an MNA-based circuit simulator (thick broken curves)

and Spice3e2 (thin continuous curves). R_=Rs=50 _, R2=R6=l kf2, R3=R4=10 Mr2;

self-inductance L,=418 nil/m, self-capacitance C,=94 pF/m, mutual inductance L,,= 125

nil/m, mutual capacitance C,,,=22 pF/m, R=15 f2/m, G=O, l=0.677 m (all signal

conductors are the same).

(a) the circuit schematic, (b) IBIS model for the ECL buffers, and (c) the transient

waveforms simulated with the segmentation and suggested line models. The line

parameters are: L=502 nil/m, C=67.9 pF/m, R={3.25 f2/m at de, 87.7 f2/m at 10

GHz}, G={430 fS/m at dc, 4.3 mS/m at 10 GHz},/=0.88 m.

(a) the circuit block schematic, (b) IBIS model for the CMOS buffers, and (c) the

transient waveforms simulated with the segmentation and suggested line models.

Table I. Relative runtimes.

TABLE CAPTIONS
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